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NEW METHODS OF CELESTIAL MECHANICS

INTRODUCTION

The Three - Body Problem is of such importance in astronomy, and is

at the same time so difficult, that all efforts of geometers have long been

directed toward it. A complete and rigorous integration being manifestly im-

possible, we must turn to the processes of approximation. The methods first

employed consisted of seeking developments in terms of powers of the masses.

At the beginning of this century the achievements of Lagrange and Laplace and,

more recently, Le Verrier's calculations, have added such a degree of perfection

to these methods that until now they have been sufficient for practical use.

I may add that they will suffice for some time to come in spite of some diver-

gences in details. It is certain, nevertheless, that they will not always be

adequate, which a little reflection makes easily understandable.

The final goal of Celestial Mechanics is to resolve the great problem of

determining if Newton's law alone explains all astronomical phenomena. The

only means of deciding is to make the most precise observations, and then com-

pare them to calculated results. This calculation can only be approximate, and

it would be pointless to calculate to more decimals than observation can give

us. It is therefore useless to ask more precision from calculation than from

observation, but neither should we ask less. Furthermore, the approximation

with which we can content ourselves today will be insufficient in several cen- /2

turies. And, in fact, even admitting the improbability of perfecting measure-

ment instruments, the very accumulation of observations over several centuries

will permit us to know the coefficients of the various inequalities with

greater precision.

This era, when we will be obliged to relinquish old methods, is without

doubt still quite distant. However, the theorist must anticipate it, because

his work must precede, and often by a great number of years, that of the numer-

ical calculator.

We must not believe that in order to obtain precise ephemerides over a

great number of years it will suffice to calculate a greater number of terms in

the developments implicit in the old methods.

These methods, which consist of developing the coordinates of the heavenly

bodies in terms of the powers of the masses, have, in fact, a common character

which is opposed to their use for long-term calculation of the ephemerides.

The series obtained contain terms called secular, where time occurs outside the

sine and cosine terms, with the result that their convergence would become

doubtful if we were to give this time t a large value.

The presence of these secular terms is not basic to the nature of the prob-

lem, but only to the method used. It is easy to realize, in fact, that if the

true expression of a coordinate contains a term in

sin _ mt,

¢_umbers given in the margin indicate pagination in original foreign text.
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being a constant and m being one of the masses, we will find, whenwe wish to
develop in powers of m, the secular terms

omtJ_3+...,

and the presence of these terms would give a very false idea of the true form
of the particular function.

This is a point on which astronomers (including the founders of Celestial
Mechanics themselves) have long agreed: under all circumstances whenthey
wanted to obtain formulas applicable to long time periods, as for example in
the calculation of secular inequalities, they have had to operate differently
and give up the method of development only in powers of the masses. The study
of secular inequ.alities by meansof a system of linear differential equations
with constant coefficients can, therefore, be regarded as related to new
methods rather than old.

All efforts of geometers in the second half of this century have had as
main objective the elimination of secular terms. The first serious attempt
madein this direction was that of Delaunay, whosemethod is still used, with-
out doubt, to great advantage.

Wewill also cite Hill's researches on Lunar Theory (American Journal of
Mathematics, Vol. i; Acta mathematica, Vol. VIII). In this work, unfortunately
incomplete, we are permitted to perceive the germ of the major part of the
progress which science has since made.

However, the scientist who has given this branch of astronomy the most
eminent service is without question Gylde_. His work touches all parts of
Celestial Mechanics, and it uses with ease all resources of modern analysis.
Gylde_ has succeededin,eliminating entirely from his development all secular
terms, which so troubled his predecessors.

On the other hand, Lindstedt has proposed a method muchsimpler than that
of Gyld_n, but of less power, because it is no longer applicable whenwe are
confronted with those terms which Gyld_n calls critical.

Through the efforts of these scientists, the difficulty arising from the
secular terms can be regarded as finally overcome, and the new processes will
probably long satisfy practical requirements.

However, all is not yet resolved. Most of these developments are not con-
vergent in the sense that geometers understand this word. Without doubt, this

has little importance for the moment, since we are certain that calculation of

the first terms provides a very satisfactory approximation. However, it is no

less true that these series are not capable of giving an arbitrarily close

approximation. Thus there will come a time when they too will be insufficient.

In addition, certain theoretical consequences which we might be tempted to

obtain from the form of these series are not legitimate because of their diver-

gence. For this reason they fail to resolve the problem of the stability of

the solar system.

/3
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The discussion of the convergence of these developments should attract the

attention of geometers, first for the reasons I have just given, and in addi-

tion for the following: the objective of Celestial Mechanics has not been

attained when the ephemerides have been only more or less approximately calcu-

lated, unless we can account for the degree of approximation obtained. If we

in fact verify a divergence between these ephemerides and observations, we

must be able to recognize if Newton's law is at fault or if all can be ex-

plained by imperfection in theory. It is therefore important to determine an

upper limit for the error committed, a factor with which we have, until now,

perhaps not been sufficiently concerned. Thus the methods which permit deter-

mination of convergence at the same time give us this upper limit, which there-

fore increases its importance and usefulness. No one should be astonished at

the space I will allow them in this work, even though I may not have given the

fullest account.

I have concerned myself with these questions, and I have devoted a memoir

to them which appeared in Volume XIII of Acta mathematica. I have especially

made every effort to display the rare results relative to the Problem of Three

Bodies, which can be established with the absolute rigor demanded by mathema-

ticians. It is this rigor which alone gives some value to my theorems on the

periodic, asymptotic and doubly asymptotic solutions. Here, we can find in

fact, a solid ground which can be confidently relied on, and which will be a

great advantage in all research areas, even in those not restricted to the

same rigor.

On the other hand, it has appeared to me that my results permitted me to

unite, in a sort of synthesis, the greater part of the new methods recently

proposed, and this is what made me decide to undertake the present work.

In this first volume I have had to restrict myself to the study of periodic

solutions of the first order, to the demonstration of the non-existence of uni-

form integrals, and to the exposition and discussion of Lindstedt's methods.

I will devote the subsequent volumes to the discussion of Gylden's

methods, the theory of integral invariants, the question of stability, the

study of periodic solutions of the second order, of asymptotic and doubly

asymptotic solutions, and finally to the results which I may obtain between

now and their publication.

/5

Moreover, in the following volumes I will doubtless be forced to return

to the materials presented in Volume I. Logic will suffer somewhat from this,

it is true, but it is impossible to do otherwise in a branch of science which

is in the process of formation and where there is continuous progress. I

therefore excuse myself in advance.

One last remark: it is usual to put the results in the form most conven-

ient for calculation of the ephemerides by expressing the coordinates as ex-

plicit functions of time. This procedure obviously has many advantages, and I
have conformed to it as often as possible. However, I have not always done so,

and I have frequently put my results in the form of integrals, i.e., in the

form of implicit relations between the coordinates alone or between the coordi-

nates and time. These relations can first be used to determine the formulas

3



which give the coordinates explicitly. But this is not all; the true aim of

Celestial Mechanics is not to calculate the ephemerides, because for this pur-

pose we could be satisfied with a short-term forecast, but to ascertain whether

Newton's law is sufficient to explain all the phenomena. From this point of

view, the implicit relations which I have just spoken of can serve just as well

as explicit formulas. In fact, it is sufficient to substitute in them the ob-

served values of the coordinates and to verify whether they are satisfied.



CHAPTERi. GENERALITIESANDTHEJACOBIMETHOD

Generalities

i. Before beginning my principal subject, I must go into certain prelimi-
nary details and briefly summarizethe fundamental principles of Jacobi's
"Vorlesungen Hber Dynamik" and Cauchy's theory relative to the integration of
differential equations by series. I will therefore devote this first chapter
to the exposition of Jacobi's method, limiting myself for the most part to
stating someresults whosedemonstration is well known.

Let us first give someexplanations on the subject of notation and defini-
tion which will be used throughout this memoir.

The differential equations with which we will deal will have the following
form

/v

dxl dzs
dxt -_ Xh = X21 .. _ Xs,a---/- 'a7 ., -_- (1)

XI, Xf, ..., Xn being analytic and uniform functions of the n variables Xl, Xf_ ...,

xn. As for the independent variable t, which we will consider as representing

time, we will suppose most often that it does not enter explicitly into the
functions X.

System (i) can be considered of the order n since it equals a single dif-

ferential equation of the order n, but if the functions X are independent of t

this order can be decreased by one. To do soj we need only eliminate time and

write equations (i) in the form

d:ct dx2 d.v.
x-7 =-_-, ..... -x-;;"

In order to avoid all confusion, we will fix the meanings of the words sol-

ution and integral according to what follows.

If equations (i) are satisfied when we set

=,= _,_,), =, = _(,) .... , =.= _.(t), (2)

we will say that equations (2) define a particular solution of equations (i).

If a certain function of Xl_ xfj ..., Xn,

F(Xl, xf, ..., x ),
n

/8
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remains constant by virtue of equations (i), we will say that this function F

is a particular integral of system (i).

It is clear that knowledge of an integral permits reduction of the order

of the system by unity.

In problems of Dynamics, equations (i) are presented in a more special

form, known under the name of Hamiltonian or the canonical form.

Variables are separated into two sets; we will regularly designate by

Xl, x2, ..., Xp

variables of the first set and by

YI' Y2' "''' Yp

those of the second set, and the differential equations will be written

F being a uniform function of the 2p variables x and y.

These equations admit a particular integral which is the function F itself

and which is known under the name of vis viva integral.

We say that x I, YI' x2' Y2' ..., Xp, yp form p pairs of conjugate variables.

We will say, from the example set by the English, that system (3) contains

p degrees of freedom. This system is of the order 2p; however, knowledge of the

vis viva integral permits decreasing this order by unity. Time not entering ex-

plicitly into the second members of equations (3), by eliminating time, as we

said above, we can again decrease the order by unity, such that finally a system

containing p degrees of freedom can always be reduced to one of the order 2p-2.

/9

We know, for example, that if there is only one degree of freedom, the sys-

tem can be reduced to the order 0, i.e., completely integrated.

Examples of Canonical Equations

2. The simplest case of equations of Dynamics is that where we study the

motion of q free mass points in space. Let mI be the mass of the first of these

points, Xl, x2, x3 its Cartesian coordinates; in the same manner let m2 be the

mass of the second of these points, x4, x5, x6, its coordinates, and so forth;

finally, let m be the mass of the q-th point, X3q_2 _ X3q_l and X3q , its coordinates.q

6



Let us project the quantity of motion of point mI on the three axes: let

YI' Y2' Y3 be the three projections; similarly let Y4' Y5' Y6 be the projections

of the quantity of motion of point m2, etc.; finally, let Y3q-2' Y3q-l' Y3q be

the projections of the quantity of motion of point m
q

Let FI, F2, F3 be the components of the force which acts on ml; let F4,

F5, F6 be the components of the force which acts on m2, etc.; finally, let

F3q_2, F , F be the components of the force which acts on m .
3q °I 3q q

We will suppose that the components F depend only on the 3q coordinates x.

If there is conservation of energy, there will exist a function V of the coordinates

x, called the force function, and such that

dV
F. _ •

i dx.
I

The semi-vis viva T will be expressed as

T- ">'_ -_-Yi +.r'_ -t- ")'_ +Y_ +Y_ +...-i- )_q-'_ y_q_,-I-) _/ ,

2 ItL 1 9, nl_t 2 Dlq

and we will be able to write the vis viva equation as

T-V:const.

If I set

T--V = F(xt, x2, ..., xaq;y,, )'_ .... ,y3q), /i0

the equations of motion will be written

d_'i dF dye _ dlr (i =, _.. 3q).- ' a, , "', (1)

Thus the equations of the motion of q free mass points allow 3q degrees of

freedom whenever the forces depend only on the positions of these points in space

and there is conservation of energy. In particular the Problem of Three Bodies

allows 9 degrees of freedom. We will see below that this number can be lowered con-

siderably.

If our q mass points all move in the same plane, the position of each of these

points will be defined no longer by three coordinates, but only by two. The number

of degrees of freedom will consequently be reduced to 2q.

Thus, when the orbits of the three bodies are plane and all three are situated

in the same plane, the Problem of Three Bodies (which we will then call the Prob-

lem of Three Bodies in a plane) will allow no more than 6 degrees of freedom.

7



The case where there is only one degree of freedom being immediately inte-
grable, we will consider throughout the case presented immediately after, that
is to say, the case where there are only 2 degrees of freedom. Most of the re-
sults which follow will only be applied to this relatively simple case.

In manymechanical problems the number of degrees of freedom can, in fact,
be reduced to 2. This is what occurs, for example, whenwe study the motion of
a free masspoint in a plane or, more generally, the motion of a mass point
constrained to a surface, whenever the force depends only on the position of this
point. Wewill cite amongothers the well-known problem of the moving body
attracted by two fixed centers, whenthe initial velocity of the moving point is
in the plane of the three bodies.

But this is s somewhatmore complicated case, which will have greater im-
portance later.

Let there be in a plane two rectangular axes O_ and O_ moving with uni-
form rotational motion about the origin O. Let n be the angular velocity of
this rotational motion. Let P be a point moving in this sameplane_ whoseco-
ordinates with respect to these two axes are _lled _ and _ and whosemasswill
be taken as unity.

Let V be a function of the forces depend" g only on _ and on _, such that
the projections on O_ and on O_ of the force ich acts on point P are, respec-

dV dV
tively, _ and d-_"

The equations of the relative motion of point P with respect to the moving
axes O_ and O_are written

d_ _ d_ cW )dt' an dt -----d_ + n'-_,

d'- 7_ d_ dV td--tY+ a n -d--t= _-_ _ n "-,, ,

(2)

whence we deduce the following integral_ called the Jacobi integral,

,,'
_Lkdt/ -_ \/Jc/_ --V-Y (U+'')=c°n_t''

which is nothing other than the vis viva integral of the relative motion.

I state that these equations can be reduced to canonical form, the num-

ber of the degrees of freedom being equal to 2.

Let us set, in fac%

d_,
n_', =yt, n._ :9"2,

dt dt
1 ! 121

F = _ (.rl+ nx_)_+ _ Cr_ -- nx_): --V-- _ (x_ + xl) ;

8



equations (2) will become

d.r i dF dr, dF dy, _ dF dy, dl"
dt - dr,' -_ = _' -_ - -- d_,' -Y? -- dr, Q.E.D.

One of the special cases of the Problem of Three Bodies goes back to the

problem which we have just treated.

Let us suppose that one of the three masses is infinitesimal such that the

motion of the two other masses, being unperturbed, remains Keplerian. Such,

for example, would be the case of the motion of a small planet in the presence

of Jupiter and the Sun.

Let us imagine the eccentricity of the orbits of the two large masses to

be O, such that these two masses describe with uniform motion two concentric
circumferences about the common center of gravity, assumed fixed.

Let us suppose finally, the inclination of the orbits being zero, that

the small mass moves constantly in the plane of these two circumferences.

The center of gravity of the system, which is the common center of the

two circumferences, can always be assumed fixed: we will take it as the origin;

we make two moving axes C_ and OR pass around this origin: t_e axis O_ will

be the straight line which joins the two large masses; the axis OR will be per-

pendicular to 0_.

We see that:

(i) These two axes are moving with a uniform rotational motion;

(2) The two large masses are fixed with respect to the moving axes. We

must therefore study the relative motion of a moving point, in relation

to two moving axes_ under the attraction of two centers fixed with re-

spect to these axes. We therefore return to the question we have just

considered.

Thus, in this special case, the equations of the Problem of Three Bodies

can be reduced to the canonical form with only two degrees of freedom.

We now proceed to an equation often encountered in the theory of l_rtur-

bations, and one which Gylden uses frequently.

Let

_X

dr' =f(x, t). (3)

This equation can also be reduced to the canonical form.

In fact, f(x,t) can always be regarded as the derivative with respect to

x of a certain function _ (x,t), such that



If we now set

dx

x = xl, _7 = Yi, t = y2,

V = _ -- ?(x,,)',)-- _,,

equation (3) can be replaced by the canonical equations (3) from the preceding

article with only 2 degrees of freedom. Q.E.D.

I will cite one last example. Let us consider a solid heavy body suspended
at a fixed point, and let us study the oscillations of this body. In order to

completely define this body's position, we must be given three conditions; we

must, in fact, know the three Euler angles formed by a system of axes invariably

connected to the body with a system of fixed axes.

The problem will therefore contain 3 degrees of freedom; however, we will

later see that this number can be reduced to 2.

I have said enough of this to show how many problems of Mechanics lead to

the integration of a canonical system having 2 degrees of freedom and to make

the importance of these systems understood; it is therefore unnecessary to mul-

tiply the examples still more.

First Jacobi Theorem

3. Jacobi has shown that the integration of the canonical equations

reduces to the integration of one partial differential equation

F(zt, zz,. .... xw;y,,y, .... ,yv)= h,, (2)

where hI is an arbitrary constant and where YI' Y2' ..., yp are assumed to re-

present the partial derivatives of the unknown function.

Let_ in fact,

S(xL,z,,,...,zv; At,h,,....hv)

be a solution of equation (2) containing, in addition to the constant hl,
p-i constants of integration

A2, ha, ..., hp,

such that we have_ for any h,

F xl,x, ..... xp; -_-Zx,'8_' "'" ' -d_ = kl.

Jacobi has shown that the general integral of equations (i) can be written

i0



dS
_l_,,.=yi (/:: l, 2, ...,p),

dS
_-_,. =- h_ (i= 9., 3 .... ,p),

dS
dh----_l-= t + h'l .

(3)

The 2p constants of integration are then

ht, h_, ... , hi:,,

h'_, z4, ..., h_.

Another theorem which we will make use of is that of Poisson.

Let U and V be two arbitrary functions of x and y. We agree to write

i=p

i=!

Now let FI and F2 be two integrals of equations (i). We see immediately

that we will express FI as an integral of equations (1), while writing

[F,F_]= o.

F2 also being an integral, we will have in the same manner

[F, Ft]= o.

Poisson has demonstrated that the expression [F2 F2 ] is similarly an inte-

gral of equations (i). It is thus that, in the problem of n bodies, if we

assume that FI and F 2 are the first members of the first and second

area equations, IF I, F2] will be the first member of the third area equation.

Second Jacobi Theorem; Changes of Variables

4. We will not ordinarily retain the rectangular coordinates and the

components of the quantities of motion as independent variables. We will se-

lect those better suited for our purposes, attempting always to retain the

canonical form for the equations.

Let us therefore see how we can change variables without altering the

canonical form of equations (i).

Let

S(yt,y, .... ,yp; ht, I,_, ...,hp)

be an arbitrary function of p variables y and of the new p variables h.

Let us now set

dS dS
x, = = z,);, (4)

11



Equations (4) are regarded as defining the relations which connect the old
variables

)t, )'_, -.. , )'q

to the new variables

hl, h_, ..., hq_

h_, h_..... h+.

Jacobi has demonstrated that if we make this change of variables_ the

equations will remain canonical and do so whatever the function S may be.

Special Changes of Variables

5. Save for an exceptional case, all changes of variables which do not

alter the canonical form can be deduced from the process in article h.

However, there are some cases where it is simpler to operate otherwise. We

will give two examples.

Let us assume that we have the canonical eauations

_, dr _L dF (1)
dt --dye' dt -- dz_

and that we make the change of variables according to

.y, = _,.,y_ + _,.,z_ + + _,,z;,. I (2)

How must we choose the constants _ and B so that the equations remain canonical

when we take x' and y' as new variables?i z

If we designate by

the real increments in x and y, and multiply equations (i) respectively by 6yi and
-6x. and then add them, it will follow that

I

=k dt _ -- _i

In order for the equations to remain canonical after substitution (2), it

is thus necessary and sufficient that we have identically

\ ,¢__.r,- _y = _ L_ o.r,- -d_ °_,) (3)

Since dx i depend only on dx'i' 6Yi on 6yl, dy i on dy_ and 6x i

have identically

on 6x_, we must
i

(h)

Relations (2) being linear, dx i are related to dx],x and 6x. to 6x'z i

12



by the samerelations which subsist between xi and x' i. The sameis true for

dYi' 6Y'i' Yi_ dY'i' 6Y'i' Y'i"

Relations (4) will therefore hold whenwe replace in them dxi and 6xi by

xi, and dyi and 6y. by y._ dx' and 6x' by x' etc Wemust therefore havei l i i i

_,-y,= _;y_. (5)

The reciprocal is true an_ relation (5) implies relations (3) and (4).

Thus_ the condition necessary and sufficient for the equations to re-

main canonical is that we have identically

What is now the condition for these equations to remain canonical and at

the same time for us to have

_k,t" _ _k.i ?

I will say that a linear change of variables, such as (2), is orthogonal

if we hsve identically

_x_ = _x_,

i.e., if we have

i = n I_tl

i=1 i:1

This definition justifies itself since, in the case where the number of

variables is 2 or 3, and where we can regard x or the x' as the coordinates of

a point in the plane or in space_ a similar substitution is nothing other than

a rectangular change of coordinates.

With this stated, if we make a similar orthogonal substitution give way to

x and to y, we will have

_(x_+y,)'_ _(xi_y_),

whence

The equations will therefore remain canonical.

6. The equations will still remain canonical if we make a change of var-

iables depending only on xI and on YI' for example, and if we place

z, = +(z'_,y'_), Y_ = +(-",,/L),

1:5



and take x' i and Y'I in place of xI and Yl as new variables; these equations

will remain canonical, I say, provided that the functional, or Jacobian,

determinant of xI and Yi with respect to X'l and Y i' is equal to I

Thus_ if we set
.T I _--- _'p C050J , yl = I/_ s[nt°,

the canonical form of the equations will not be altered and the variables p and

will be conjugate as were xI and YI"

7. Above we defined the change of variables

dS dS

which does not alter the canonical form of the equations, when S is an arbitrary

function of Yi and h..
I

Nor is this form altered if we permute x. with y. and if we change F into
-F at the same time. l I

If, therefore, S is an arbitrary function of

_z, x_, _..; _p, hi, h_ .... , hp

and if we set

dS Y$
y,-= y£, z,}= _,

the canonical form of the equations will not be altered when we take hi and h_
as new variables, and when we change F into -F at the same time. i

Nor will it be altered if we change

Yl' Y2' "'" y and F

into

Xy I, ky2, ..., Xy
n

k being an arbitrary constant.

and kF,

Let us therefore consider still another function S of x. and of h., and
let us set l l

dS dS
Xr , = "Xi__' I,', = . _-.

gill i

The canonical form will not be altered if we take hi and h'. as new variables,
I

and if we change F into -kF at the same time.

14



Keplerian Motion

8. Let us apply the preceding principles to Keplerian motion.

In the following portions we always will suppose that the units have been

chosen such that the attraction of the two units of mass to the unit of dis-

tance is equal to the unit of force or, in other words_ that the Gaussian

constant is equal to i.

Let us therefore consider the motion of a moving mass under the influence

of a fixed mass situated at the origin of the coordinates and equal to M. Let

Xl, x2, x3 be the coordinates of the

portents of velocity; if we set

F=YT+YI+Yl
2

the equations of motion are written

dxi dF

moving mass_ and ylj Y2' Y3 be the com-

¢=_+ zl+ x_'

d:._-_ dZ. (z )
dt -- dxi

According to article 3_ the integration of these equations is reduced to

that of the partial differential equation

(dsV+ { ds _,+ { ds V _t _h,
dxt] \dx,] \-_x,] _lxi+x]+xi (2)

where h is an arbitrary constant.

xl_ rsln_cos_,

the equation will become

.T,= r COSta,

We can satisfy this equation by introducing two arbitrary constants G

and @ and making

/2O

as f#s V o,,_I
\ d_ ] sinew

sv+ G,M _M
dr] "_i- = -r + _ h.

(3)

The function S thus defined will depend on r_ _ q0, G_ ®_ h or, what is

the same, on Xl, x2, x3, G, @, h, and the general solution of equations (i)

will be written

dS dS dS dS
r, = _,#;, h' + t = _i' g = _, 0 = _'0'

h', g and 0 being three new arbitrary constants. If we set

15



= 4/----_ _'!, M M
I. V_K /' =- ;_' " = E_' t = nCt+/,'),

we will be able to write
dS dS dh 31

= _ cl-L : (h'+ t) _ = n(h'+ t) : 1.

The integration constants then number six, namely

L, G, O, h', g, 0.

It is easy to see the significance of these constants and to express them

as functions of those which are usually used. If a, e and i designate the

major axis, the eccentricity and the inclination, we have

L = _'a, G = v/a(,--e'), O = Gcosi.

On the other hand, 0 is the longitude of the node, g + 0 is that of the

perihelion, n is the mean motion and [ is nothing other that the mean anomaly.

If the moving mass, instead of being subject to the attraction of the

mass M, were subject to other forces, we could, nevertheless, construct the

function S and then define six new variables

L,C,e, L,g,O (_)

as a function of x i and Yi by equations

dS dS dS dS
r, = y-_, _z = l, _G = g' _6 = o; (5)

L, G, ®_ g and 0 would no longer be constants.

We can then use the six variables (4) to define the position and velocity

of the moving mass. We will give these variables (h) the name Keplerian var-

iables, it is important to remark that the definition of these Keplerian var-

iables depends on the origin to which the moving mass is related and on the
value chosen for M.

If the moving mass is a planet which is subjected to the preponderant

action of the mass M and to various perturbing forces, we see that these

Keplerian variables are nothing more than what astronomers call the osculating

elements of this planet.

take
In the particular case when the orbit of the body mI is a plane, we can

as new variables with the mean anomaly t and perihelion longitude g. The

Keplerian variables then number no more than 4.

It is important to make some remarks on the subject of the use of these

Keplerian variables: we remark first that the old variables

and the position of the body mI do not change when there is an increase in t,
g or 8 of 2 _, without touching the other variables. These old variables are

therefore periodic functions of t, g and 8.
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In the second place, we must always have

L'> G'-_0_.

Finally_ if G = • ®, the old variables and the position of the body m I no

longer depend on ®; and if L = ± G, they no longer depend on g.

Special Case of the Problem of Three Bodies

9. Let us return to the special case of the Problem of Three Bodies

which we considered above.

Two masses, the first equal to i-_ the second equal to _ describe two

concentric paths about their common center of gravity assumed fixed. The

constant distance of these two masses is taken for the unit of length, in such

a way that the radii of the two circumferences become respectively _ and i-_

the mean motion being equal to unity.

Let us now suppose that in the plane of these two circumferences there is

a third moving body, infinitely small_ and attracted by the first two.

We will take as origin 0 the common center of the two circumferences, and

we will be able to relate the position of the third mass_ either to the two

fixed rectangular axes 0x I and 0x2, or to the two moving axes O_ and 0_ de-

fined as in article 2. The mean motion of the first two masses being equal to

i, we can suppose that the angle of O_ and 0x I (i.e._ the longitude of the

mass _) is equal to t.

Since the Gaussian constant is assumed equal to I_ the force function

reduces to
V= mL-_+ m,(,-- l_)

rl /'I

calling mI the infinitely small mass of the third body, rI the distance between

the two bodies ml_ _ and r2 the distance from the body mI to the body of mass

i-_ such that
r I = 7,'+(( + H - ,)' = [z,-- (, -- _) sin el' + [x, --(, - _) cost]'-,
r| =_'+(_+ Ft)'= [ws+ _tsint]*-t [_'t+ Fc_,+t]:.

The vis viva equation is then written J_L+ Y_,'_V=eonst.

We agree to call -mlR the first member of this equation. R will be a function

of xI, x2, of YI' Y2 and of t, and the equations of motion will be written

dar, d( m, R ) dr, d(m, R)
"-d? =-- dr, ' --d? =- --d.r ,

dy_2= d( m, R) dy, _ d(m, R)
dt dwi ' --_ -- dx2

17



Let us replace the variables xi, yl_ x2, Y2 by their values as functions

of the K_=plerian variables L, G, 4, g, as has been said in the preceding article.

R will become a function of L, G, 4, g and t, and the equations of motion will

be written

dC dR dt dR dG dR dg dR
d t -- dt ' _ =- 7__ ' _ = -_g ' 4-5 =- -riG"

These equations would already be in the canonical form_ _f R only depended

on the four Keplerian variables, but R is also a function of t; it is there-

fore necessary to transform these equations_ so that time does not enter ex-

plicitly. To do so, let us see how R depends on t.

It is easily seen that R can be regarded as a function of L, G, 4, and

g - t. If, in fac% we increase g and t by the same quantity, without touching

2+,2_ nor consequently
the other variables, we change neither _ nor _, rl, r2, Yl J2
R.

This results in

If we then set

dR dR
+ _- = od--7 _g

.', = L, _; = C,

y', = t, y_ = g-- t,
F'= R+G,

x' ' and ' and the equations of motion,F' will depend only on x_, 2' Yl Y2
which will be written

d_; dF' &__ dr'
-a7= (i)

will be canonical.

It is in this form that we will ordinarily write the equations of this

problem.

When mass _ is assumed to be zero, the mass i-_ becomes equal to I and

is related to the origin; r2 reduces to /x12 + x_, the force function V reduces

to ml/r2_ and we find
! ! I

aa _ ax;'

t x_,and F'--_2x;--q+

When _ is not zero, we see immediately that F' can develop in terms of the

increasing powers of _, which allows us to write

F'--F0+_F,÷ ....
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We see that
F 0 ..... _- x' 2

T

is independent of y_ and of Y2"

In addition_ FI will at the same time depend on the four variables; but

T

this function will be periodic with respect to y_ and Y2' and it will not change
when one of these two variables increases by 2w.

We observe finally that if xi = +x_ the eccentricity is zero and the

T T

motion is direct_ and that FI then depends only on xi, x'2 and YI+Y2"

On the contrary_ if Xl--X2'- ' , the eccentricity is zero, but the motion is

T T T

retrograde, and F I then depends only on xi, x' and2 Yl- Y2"

Use of Keplerian Variables

i0. Let Xl, x2_ x3 be the rectangular coordinates of a point; yl _ y2 _

Y3 its velocity components; m its mass. Let Vm be the force function, so that

the components of the force applied to the point are

If we set

! 2

F = _(y_ +y| +y])+V,

the equations of motion for the point will take the canonical form

dx_ dF dyi dF
_=_Z' -_=-_"

In article 8 we defined a certain function

S(xi, x:, x_, G, 0, L).

We have seen that if we make the change of variables defined by the equa-

tions

dS dS dS dS
dx--_= Y" "_ = g' Y6 = O, _Z = t,

the new variables are nothing other than the Keplerian variables we have just

defined.

By virtue of the theorem of article 7_ the equations will retain the

canonical form and will be written

dL dF dG dF dO dF
at - at' -_7 = -- -&g' d--7= -- -d_'
dl dF dg dF dO dF
_; = _Z ' -_ = -riG' -ai : -dO"

,/25
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The force remaining constantly in the xI x2 plane, the same may be true of the
moving point.

In this case we will constantly have

G : @,

and the function F will depend only on G, L, t and on the perihelion longitude

g + 0 = _; we will have
_" dF dF

In order to maintain sscnmetry, we will set

G=@=U.

The number of Keplerian variables will be reduced from six to four, namely

]_ L_ wj and t, and the equations become

dL dF d_I dF dl _ d_ dF
d--i = --g[' '87 = --8_' _ = -d-f.' '_it = -8-ii"

General Case of the Problem of Three Bodies

ii. We come to the general case of the Problem of Three Bodies: let ABC

be the triangle formed by the three bodies; a, b_ c the sides of this triangle;

ml_ m2, m 3 the masses of the three bodies.

The force function is then written

m_ nZ 3 m 3 D_ 1 n_ 1 nZ_
4- +a 7 c

We will call the force function V_, _ designating an arbitrary constant
which we will determine more completely later.

I will suppose that the center of gravity of the three-body system is

fixed and I will call D the center of gravity of t_le system of the two bodies
A and B.

I will consider two systems with moving axes:

The first system_ always parallel to the fixed axes_ will have _ts origin
in A.

The second system_ also parallel co the fixed axes_ will have its origin

in D. I will call Xl_ x2, x3 the coordinates of point B with respect to the

first moving axes; x4, x and x6 the coordinates of point C with respect to5

the second system of moving axes.

2O



i
The total vis viva will then be expressed by

.,,.,, (a_; a_i _,_;_ (.,,+,,,,).,, (a=,,
ml + ml \ dt I + -d-_ + dt_ ] + rnl + mi + m= \dr'

+

If we then set

nil nil (hi I + m:l ) m_• , yl = _ d.r,[b,= ,,,,+,,, , 13'_,= ,,,, +,,_,-+ ,,,_ _dy,

F= m_y__yi+y;+yl Y_+Y!+Y_ V, Y_-=i3'd_'

d;T 1

y, = [t -3T ,

-dT '

dyc 3

dxs

the equations will take the canonical form

dxi dlv dy_ dF
,_-/-=_'Z' -_+7=- aE"

Let us again take the function

S(xi, x2, x_; L, G, O)

defined by equations (L) of article 8.

Let us construct it first by setting

Let us then set

M =_m i -',- nil.

dS dS dS
3]- = #, _O = g, _,_ = 0.

Then we construct this same function S by having

M--= mr+ mi+nl=;

we call

S'(x4, xl, x6; L', G', 0')

the function thus constructed, and we set

dS' dS' dS'

= l', dG' = g'' _'_

(i)

(2)

Then let
z=_s+_'s'.

The derivatives of Z with respect to L_ G_ ®,

, , _,®,.spectively, _t, _g, _0, _'t', _ g ,

If in addition we set

dz

• ° s

iTisserand, Mecanique celeste, Chapter IV.

L' G' ®' will be, re-

(3)

21



equations (i), (2) and (3) will define the 12 old variables x and y as functions
of the 12 new variables, which I will divide into two series in the following
manner:

_L, _G, _0, _'L', _'G', _3'O'_ I (4)
1, g, O, l', g', 0'.

The theorem for articles 4 and 7 then shows that the canonical form of

the equations is not altered.

It is easy to realize the significance of the new variables.

Everything occurs as if two masses, equal respectively to B_ and _'_,

had for coordinates with respect to fixed axes, the first Xl, x2, x3, the sec-

ond x4, x5, x6 and as if these two fictitious masses were subjected to forces

admitting the force function Vb.

Then, if at some instant the forces applied to the first fictitious mass

chance to disappear, and if they are replaced by the attraction of a mass m I

+ m2 placed at the origin, this mass would move according to Kepler's laws and

the elements of this Keplerian motion would be L, G, 0, t, g and 8.

Furthermore_ if the second fictitious mass were subjected only to the

attraction of a fixed mass mI + m 2 + m 3 placed at the origin, the elements of

G' 0' t' g' 8'.the Keplerian motion which it would take would then be L', , , , and

Let us observe that F does not depend only on the variables (h), but on

ml, m2, m3 and on b.

In general, m 2 and m3 are very small, such that we may set

m 2 : _2b , m 3 : _3 _,

considering _ small, and retain finite values for _2' _3' 8 and 8'; F, which can

then be regarded as a function of the variables (L) of ml, _2' _3 and of _,

could then be advantageously developed in terms of the increasing powers of

F:Fo+F_+ ....

If we set b = O, it follows that

_'3 nZ L a[I n_ I _, -----V = 7+ + -- ' [3= _.,, a_,C

and

v=vo= ?+" [3'+ _-I _I .
{_-C_), + +(+'L') +-= _+t$ + +(++'J+'),'
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F then no longer depends on any of the variables of the second series t, g, e, t',

g', e'; I will add that, whatever _ may be, F is a periodic function of period

2_ with respect to those variables of the second series.

Let us say a few words about certain special cases. If the three bodies

remain constantly in the Xl, x2 plane, we will have G = ®, G' = ®' and F will

depend only on g + e and g' + e', such that we will have only four pairs of con-

jugate variables

_L, _c =_o = _., FL', VO'= _'o'= _'.',

l, g+O =m, l', g'+ O' =_'

as has been said in article i0.

12. Let us again take the notation of article ii and the equations from

this article. I am going to put these equations in a new form which will be use-

ful to me in the following.

Let us first consider the special case where the inclinations are zero and

where the three bodies move in the same plane.

Let us set

_L=A, _]II=.',--H, I+m =)., m =--h,

Fu=:_', _'n'=.u-n', r+_,'_-v, _,'=-h'. _ (z)

We have
d), dF dF dF dh dF dF

dt -- d(_L) d(._II) -- dA dt = d(_H) -- dH'

dX d_ _ dH dF d_ dV
d'--t":= _ : _" dt -- dl d_ -- dh"

We thus see that the new variables A, H, A', H', X, h, _', h' are still

conjugate, and consequently the chenge of variables (i) does not alter the canon-

ical form of the equations.

We now come to the general case and resume the notations from article ii.

Let us set

_L=A, _G=A--n, [30 =A--It--Z,

[3'L'= ' fi'C'h, = h'-- ti', _'0'= A'-- H'-- Z',

).=l+g+O, h:--g_O, _=--0, t

_'=/'+ g'+ 0', h':--g'--O', _'=-- 0'.
(2)

/3o

We verify, as above, that this change of variables (2) does not alter the

canonical form of the equations.

This canonical form will not be altered either, according to the note in

article 6, if we make
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¢'_i" oos h = _,

(_"F' co_ t,' = _',

cos _ =p,

¢7Z' co_ t;'-- #,
_ sh:h -- 7. l

¢'_'_ _i,_p,'= ,,',

¢'_ sin _ = q,.

¢'7_: _'. _ = 4.

(3)

The equations remain canonical and the two series of conjugate variables

are the following

A, A', L _', P, f, Ix, x', ,,, ,:, q, q'. (4)

This is the advantage which the choice of variables (h) can have.

The function F, expressed with the help of these variables, is developable

in powers of _, _', _, _' P' q'p, , q, as well as the sine and cosine of the

multiples of X and of K',the coefficients depending in any event upon A and A'

In fact, according to the definitions of the preceding variables, we have

H = A (,- ¢,----_), z = _G O- ¢o_0;

we deduce from this that:

(i) H is developable in terms of the powers of e2, the first term of the

development being a term in e2;

(2) e2 is developable in terms of the powers of H, the first term being

in H;
e

(3) fH is developable in terms of the powers of H;

Z Z

(2) i 2 is equally developable in terms of the powers of _g--_A----2--_"
Z

(5) i/ fZ is developable in terms of the powers of -- and consequently

in powers of Z and of H. A - H

Now we have

e e eoshv:_ = e sinhvt_ i icos_ isin[Cr_
v/ii = _ _ Vz p q

Therefore e cos h, e sin h, i cos _, i sin _ are developable in powers of

{, _ , p and q ; e' cos h', e' sin h', i' cos {', i' sin _' are developable in

powers of {', _'; p'_ and a'_.

However, the form of the development of the perturbative function is well

known.

It is developable in increasing powers of the eccentricities and of the

inclinations and in terms of the cosine of the multiples of K, k' ; h, h', { and

{', and any term of the development is of the following form (Tisserand, Mecanique
• Iceleste, Vol. , p. 307)

Ne_,e'_,i_,:F, cos(m1), + nq),'+ mah-- m,h' + m_-+ m_'),
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_i being positive integers or zero and m i being any integers. Moreover_ we have

F_=lmi]÷ an even number

and_ on the other hand_

n_t+_2_ _3+_Z_+ nZ_+ n7 G.

We can conclude from this that the perturbative function is developable

in terms of the powers of

e cosh, e slnh, icos_, isin_,

e'cosh', e'slnh', i'cos_, gsin_',

and consequently in terms of the powers of

_: _', _, _', p, p', q, q'. (5)

I can observe in addition that the development of

ecosh esinh icos_ r i'sin _

• _ P q

contains only even powers of the variables (5); from this I will conclude that

the development of F will be of the following form

cos (m,_ + re,V), (6)Z N _, _,v,_,t.t,7,v,pVt_qv,p'tt, q,V, sin

N being a coefficient which depends only on A and A'

The numbers _i_- vi are positive or zero integers whose sum

bt_+v a+Ft_+v_,-t-_+v_-;- _+v_

is equal to lml + m2 + a positive even number or zero.

I have allowed the double symbol cos or sin to remain in expression (6);

we should take the cosine when the sum

is even, and the sine for the contrary case.

From this it results that F does not change when we at the same time change

the sign of K_ of _ and of q, and that it also does not change when we change X

and X' to X + w and K' + _ and that at the same time we change the signs of _, of

of p and of q.

The function F enjoys another property to which we must draw attention; it

does not change when at the same time we change the sign of p_ qj p' and q'

General Problem of Dynamics

13 . We are therefore led to propose the following problem:

To study the canonical equations

/32
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d_g arF dyi d_

,_t - _' -ai-= - _' (1)

supposing that the function F can be developed in terms of the powers of a very

small parameter _ in the following manner:

F: F0+_F,+F_F,+...,

supposing also that F 0 depends only on x and is independent of y, and that FIJ

F2, ... are periodic functions of period 2_ with respect to y.

Reduction of the Canonical Equations

14. We have seen that integration of equations (i) of the preceding arti-

cle can be reduced to the integration of a partial differential equation

F xj, x2 ..... xt,;-_zt,_,_, ... ' =const.

Let us imagine that we know an integral of equations (!) and that this
integral is written

Ft(zt'zt' ""'zb;Y*,Y2 .... ,yp) _const.;

this means that we will have identically

[F, Vt] = o. ())

I propose to demonstrate that knowledge of this integral permits lowering

the number of degrees of freedom by one.

In effect, equation (3) signifies that there exists an infinity of func-

tions S satisfying at the same time equation (2) and the equation

F, _,,_, .... '_P; 2_' _'-_,.... ' =con_t.

This granted, we eliminate dS/dx I between equations (2) and (4), with the
result that

(* _"_" '"_;_7,' _ .... ' --:o. (5)

The value dS/dx I does not enter equation (5); then nothing impedes regard-

ing x I no longer as a variable but as an arbitrary parameter; equation (5) then

becomes a partial differential equation with only p-i independent variables.

The problem is thus reduced to the integration of the equations

dxt de dyi d_

d---i=2_ ' d---i--- d_ (i= _,s .... ,r),

which are canonical equations involving not more than p-i degrees of freedom.
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Thus, if in general we know an integral of a system of differential equa-

tions, we will be able to lower the order of the system by unity; but if this sys-

tem is canonical, we will be able to lower its order by two.

Let us take for example the problem of the motion of a heavy body sus-

pended at a fixed point; we have seen that this_problem involves three degrees

of freedom; but we know the area integral; the number of degrees of freedom can
therefore be lowered to two.

What will now happen if we no longer know only one, but q integrals of
equations (i)?

Let
FI, F_, ... , Fq

be these q integrals such that

[v, V,] = [F, F,] ..... IF, Fq] = o.

May we, with the help of these integrals, lower by q units the number of

degrees of freedom? Generally this will not take place; to do so, it is required

that the q + i partial differential equations

F = ¢onst., E, = const., F, = const., .... Fq ---=-const. (6)

be compatible; this demands the conditions

[Fi, Fk]_o (i,k=,,m .... , q). (7)

If conditions (7) are fulfilled, we will eliminate among equations (6)
dS dS dS

...,
and we will arrive at a partial differential equation @ = O, where these q der-

ivatives no longer enter and which we can consider as dependent only on the p-q
independent variables

while the first q variables

are regarded as arbitrary parameters.

We will thus be led to a reduced system of canonical equations containing
not more tha_ p - q degrees of freedom.

We now reconsider, for example, the Problem of Three Bodies, retaining the
notations from the beginning of article 2. We have seen that the number of de-

grees of freedom is equal to 9.

However, we have the first three integrals of the motion of the center of

gravity which can be written
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It is easy to verify that

F, --=-y_-+-)-_-_Y7 ==-const., 1

F_ _ y, -_-Ys -_)'a _ const.,

F, ---ya -+y6 --y9 == const. (8)

[F,,F+]= [F,,F,]= [F,,F,]= o.

The number of degrees of freedom can therefore be lowered to 6.

If we restrict ourselves to the case of the Problem of Three Bodies in a

plane_ the original number of the degrees of freedom is not greater than six.

But there are no more than two analogs to 8. After reduction, there will there-

fore be only four degrees of freedom.

Let us now imagine that we know, other than the q integrals FI, Ff_

Fq, another integral Fq+l; could we deduce from this an integral of the reduced

system? This question can be stated in another manner.

We know a partial differential equation

Fq+l _ const.

compatible with the equation

F _ const.;

will it still be compatible with the system

F = eonst., Ft ==eonst., .... Fq = eoDst.? (6)

We see immediately that the necessary and sufficient condition for this to be so

is that we have

[V,Vq+,]=[V,,F_+,]...... [V_,r_+,]: o.

Let us return, for example, to the Problem of Three Bodies and let us con-

sider the three area integrals

F_ _ _)'3 -- xa)'_ + _y6 -- _y5 + xsys --- xsys =_ const., t

F_ = x_yi -- x,y_ + x+y_ --x_y6 + x_yv -- x72"9 = COnSt.. I (9)F6 = xt y_ -- x_)', + x_ Ya -- xs)'_ + x_ y_ -- xBy_ = const.

It is easy to verify that we have

[F2, F+] = -_ Fa,

[F2, F_] = o,

IF,, Fs] = -- F,,

[Fa, F+] --=--- F, ,

[ F_, Fs ] = "+-"Fl,

[Fa, F6] = o.

[F,,F_]----o,

[F,,lq] ------I'_3,

[F,,F+] : +-F,,

We do not decrease the generality of the problem by supposing that the
center of gravity is fixed, i.e., that all three constants which enter into the

last members of equations (8) are zero.

We will then have

/36
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El = F1 L F_ _ o

and consequently,

[Fi, F&] _o (i=_I,_,3; k= _,5,6),

which shows that the area integrals are still integrals of the reduced system. To

finish, I am going to attempt to reduce the number of degrees of freedom in the

Problem of Three Bodies as much as possible, considering at the same time the in-

tegrals of the center of gravity and those of area.

In the particular case where the three bodies move in a plane, we have seen

that the number of degrees of freedom could be reduced to h, considering equations

(8). The problem thus reduced still involves one integral which is an area
integral, which permits reducing the number of degrees of freedom to 3.

In the general case, it is easy to see that we have

[F+, F,] = F+, [V+,F+] = F,, [V+, V,] = F+.

The three brackets not being zero, knowledge of three area integrals does not per-

mit reducing the number of degrees of freedom by 3.

However, it is easy to see that whenever a canonical system admits three

integrals

F+, Fs, F+,

it will always be possible to find two combinations of these integrals

c?(F+, t"5, F6),

_(F_, Fs, F_),

such that

[_,,,_] =:o,

which permits reducing the number of degrees of freedom by two.

In the case we are concerned with, these combinations are immediately re-

cognized; we need only take F4 and

_--F! -_-Vl ---F_.

We will then have identically

[.?,F+] = o.

There will thus be, all reduction accomplished, only _ degrees of freedom.

If we remember that a canonical system containing p degrees of freedom can

be reduced to the order of 2p-2_ we must conclude that the Problem of Three

Bodies in the general case contains 4 degrees of freedom and can be reduced to the

sixth order.

In the case of plane motion_ it involves 3 degrees of freedom and can be

reduced to the fourth order.
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In the special case of article 9, it involves 2 degrees of freedom and

can be reduced to the second order.

Reduction of the Problem of Three Bodies

15. It is first a question of effectively making this reduction. /38

Let us first envision the case where the three bodies move in the same plane.

We have seen that the number of degrees of freedom could then be reduced to 3-

Let us attempt to accomplish this reduction effectively.

We have seen that the equations

_ dE _ dF

d-7= V_' _= _d--_'
dl dF d_ dF

a-t = - fdc.' yi = - U_i'

of motion could be written

dL' dF dll' dF

"Yf = f-d?' "Yf - _'d _ "
dl' dF d_' - dF

-ffi = - _7t_' -37- - _'d_t--_"

We also have
dF dF

d--g + _, =o,

whence the area integral

C being a constant.

Let us set

_rl = II, _'W= C-- tl, _--_'=h,

whence (if we replace _ and H' by their values as functions of C and H)

dF dF dF dF dF dF

dI--[ = _dll _'r-'_--i;' _ = d_ -- dm"' (t)

and the equations of motion will become

d(._ L___))= dF d(.___'L') _ dF dlI dF
dt -d[' dt dl; ' d---i"= _tl* '

dl dF dl' dF dh dF

d-t = d(_L)' _- -- d(_'l/)' _ =--dl- I"

There are only 3 degrees of freedom.

16. Let us proceed to the general case where the number of degrees of free-

dom must be reduced to 4. The equations are then written

dL dF dG dF dO dF

a--i= Vdt ' -a-i= -fa? ' _ = ._Tn'
dL ' dF dG' dF dO' dF

d--i= _'dt--_'' -d-i = _d' e:" "_7 = _-'ao"

dl dF dg dF dO dF

Yi = - _ ' _ = - f_ ' _ - _ do '

dl' dF dg' dF dO' dF

dt -- _'--df]" -_ = -- _.dG" d'_ ==--- _'dO"

Moreover_ we have the three area integrals which, if we take the plane of

the maximum of the areas as first coordinate plane, are written

_O+_'O'= C, 0=0', [3'(G' -- O:) --= [Y* (G', -- O', ).

5O



We then have
dF dF
d-_ + _ =o,

which shows that F depends on O and 0' only by their difference 0 - 0'; however,

as this difference is zero, by virtue of the area integrals_ F can be regarded

as no longer depending on either 0 or 0'

We find also

whence

whence

dO dO'

dF dF
(2)

Let us now set

and

G=r, G'---r',

whence 1
_o + _'o'_--c, _'r_- F'r', = c(_o- Vo')

(3)

whence

_,r_ V,r', C F,r'* _,r,13o: c + , Fo'= - + ,
aC 2C a _C _C

dF dF dG dF dO dF dO'
dL' dG dl" + do dl'' dO'dl'

(_)

or dF dF dF _r
d-l_ = _-_ 4- dO C

or finally, by virtue of equation (2),

dF dF
dF -- dG

and similarly

dF _ r
de' [_'c

The area constant C can be regarded as a given quantity in the problem.

G' ®'If therefore in F we replace G, , ® and by their values (3) and (4),

F depends only on L, L', t, t', g, g', F and F', and the equations of motion can

be written

dL dV dr dF _,' dF dl" dF

m = _' _,7= _-2_' d,- _-_' -u-z= Fx#"
dl dF dg dF dl' dF dg' dF

dt _x' _ =- _r ' 27 =- _, di =- Fx¢"

and there are now only 4 degrees of freedom.

/4o
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Form of the Perturbative Function

17. It is important to see what form function F assumeswhenwe adopt the
variables of the two preceding articles. Let us first suppose that we take the
variables of article 15 and that the three bodies move in the sameplane; function
F, depending only on the distances of the three bodies, will be developable in
terms of the cosine and sine of the multiples of t - _'+ h; the coefficients of
this development will themselves be developable in terms of the increasing powers
of

ecosl, esinl, e'cosl', e'sinl',

designating the eccentricities by e and e'; finally, the coefficients of these

new developments will themselves be uniform functions of L and L'.

For brevity, I will set

_L ----A, _'L'= A';

we will then have, according to the definition of H,

I I

e :: _ ¢'X7_._tI_, e'= ¢'_ -- (H -- C):.

Let us add that F does not change when L, t' and h change sign; consequently,

if we develop F in terms of the cosines and sines of the multiples of these three

variables, the development can contain only cosines.

We will therefore finally have

q

F= ZA(A'--II_) _- [h '2 -- (II -- C)2] _ cos(m_l+m:l'-i m_h),

p and q are positive integers, ml, m_ and m3 arbitrary integers, A is a coefficient

which depends only on A and on A'. What is more, Im3-mll is at most equal to p and

can differ from it only by an even number; similarly, Im_+m21_ is at most equal to q

and can differ from it only by an even number.

Such a development is valid when A - H and A' - (C-H) are sufficiently small;
we see that for

A=H

all terms vanish, except those for Which m3 = mI.

Similarly, if we have

A'= C- H,

all terms vanish except those for which m3 =-m 2.

if_ consequently, we have at the same time,

A_tl, A'-_.C-- tI,

all terms will vanish except those for which m3 = ml _-----nzz,
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such that F becomes a function of t - t'+ h.

If, in one of the terms of the development of F, we make

A = --H) A'= H _ C,

this term will still vanish, unless

m3 = mt =--m2.

We might be tempted to conclude that, for

A:--H,. A': It--C,

F is still a function of t - t' + h; but this is not so, for the development is

valid only for small values of A - H and A' - C + H. An analogous reasoning to

the one which precedes proves, on the contrary, that for A = -H, A'=H-C, F is a

function of t - t' h and not of t - t' + h.

In the case where the value of A - H is extremely small, it can be advan-

tageous to change the special variables.

We have identically

^l_ Hh = A(l+ h)-- h(A-- H)i

the canonical form, by virtue of article 5, is not therefore altered when we re-

place the variables

A, A', H,

l, l', h

by the following
A, A', A-- H,

1 + h, _, --h.

Let us now set

l÷h =X °, _2(A--H)cosh=_*, --(a(A--H)slnh=_*;'

by virtue of article 6 the canonical form of the equations remains when we take

as variables

A, A', _',

k°, l', _'.

It is of advantage that function F, which remains periodic in k* and t',

is developable in terms of the powers of {* and _* when these two variables are

sufficiently small.

18. Let us now take the variables of article 16, i.e.,

_L = A, _'L'= A', pr : H, _'r: rl'.
l, _, g, g'.

The variables H and H' are manifestly subject to certain inequalities;

we have

/42
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whence
A_> I1_.

(i)

Similarly,

A't > II :.
(2)

On the other hand_ we have, by virtue of the area equation,

lI cos/+ H'cosi' =--C, tlsini+ tl'sini -----o,

C being the area constant which should be regarded as one of the given quantities
of the problem. From this we deduce the inequalities

l_r/-,-r.'!>Ics, _ (3)
IHl-lWl<TC! t

Let us now see how function F depends on our variables.

For the values of H near A_ function F is no longer holomorphic with re-

spect to E; it is no longer developable in the integral powers of A - H_ but in
those of ¢CA - H.

We can then employ advantageously the following variables. Let us set

/*-g=l', V_(A -- H) cosg = ,t'i _/-2(A -- tl ) sin g" : r,"

the equations will retain the canonical form if we take

A, A', _*, II',

1*, l', _*, g'

as independent variables; in addition, function F will then be developable in

terms of the integral powers of _* and of _*.

We would operate in a similar manner if we had to consider the values of

H' very close to A'

What will now happen if the values of H and H' are very near the limits that

they are assigned by inequalities (3), i.e., if the inclinations are small or
zero?

Let us suppose, for example, that H + H' = C.

We have seen_ in article 12_ that F is developable in terms of increasing

_, , q,powers of the variables _, _', _, , p, p , q, of these sections; i.e., in

terms of increasing powers of

if the inclinations are zero; we have

G : O, G': 0",

and the last two radicals vanish, but it is not at all the same with the first

two; function F is then holomorphie in G,G',_G--_O, V'_'G'-- _'0'.
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But we have seen in article 12 that F does not change when p, p', q, q'

change sign at the same time, or, what is the same, when the two radicals

J_G - _® and _'®' change sign at the same time.

Therefore, for very small or zero values of the inclinations, F is holo-

morphic with respect to G and G' on one hand, andon the other with respect to

/(_G-_o)-(_'a'-_'®').

whence

or

However, we have

,(.,-.,)-_, o=_ c+-_--- , I ( H'I--H 'O'-----a--_ C+ C

I

v'(_G-- _o) (frO'--_'o')= _ ¢'{(H -c;,- H',l[(U'-- c),- H,I

V'[FG--_O)([_'G'--F;O')=H + U'--C",C I/[H --C --H') (H'-- C --H).

These equalities show that

G, G', _(_G-- _S) (_'0'--_'S')

and, consequently, F remains holomorphic in H and in H' for H + H' = C.

Invariant Relations

19 . In article i we considered, with regard to system

,+x__,=x,, (1)
dt

on one hand its solutions, on the other its integrals. But it remains for us

to speak of certain equations which relate to this sjstem and which can be re-

garded as, shall we say, holding the middle between the solutions and the inte-

grals. I am going to define these equations, which I will call invariant re-
lations.

Let q0 be an arbitrary function of Xl, x2, ..., Xn; we will have

d? d_ d_ do

a_ = _L x, + a_74x,+..-+ _L x..

Let us now consider a system of equations

_l(x,, x,..... x.) = o,

_,(wt, w2, ..., xn):o,

,.., ....... , ..... .,,._

?p(x,, x, .... , x,_) = o,

and let us suppose that these equations entail as a consequence tne following

d?l d?i d=i

_..; x,+ _ x,+...+ d_--;'.X. = o;

(2)

we will conclude from this that

Consequently, if equations (2) are satisfied for an arbitrary value of t,

they will be so for all values of t; this is why we will call system (2) a system
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of invariant relations, and we realize the importance that knowledge of a similar

system can have.

Let us now suppose that the system is canonical and let us return to

system (i) from article 7 and to equation

F x,,x_ ..... ar_,; _,_tt, _ , ..._ =.eonst.,

which is correlative to it.

(3)

Knowledge of a special solution of this equation (3) will furnish us a

system of invariant relations.

Let, in fact, S be this solution; let us consider the system

dS dS dS

I say'that this will be a system of invariant relations in relation to the ca-

nonical equations (i).

We find, in fact, by differentiating equation (3), that

dF dF d"-S dF d-' S dF d_ S
_tx-_.+ dy, dxtdx_ -+- dy2 dx_dx# +'" "+ dy v dxpdxi

Let us set
dS

in such a manner as to reduce system (4) to the form (2)

--O,
(5)

-_.t---- ?_ ..... ?v=o. (2)

We will have

d?t dz,.
_-_ = _' dr, - o (_X_),

d?t _ dt S
"Y-;k-_'

whence

"Yi - _ ayk at d-_k _ k dxk dyk
_¢ k k

which shows that equations (5) reduce to

d?t
-d?=O (i=,,_ .... ,p),

Thus, this is, according to what we have just seen, precisely the

condition under which system (h) is a system of invariant relations.

I will add that in the case where there are only two degrees of freedom

any system of two invariant relations can be obtained in this manner.

/46
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CHAFFER 2. SERIES INTEGRATION

Definitions and Various Lemmas

20. The method of Cauchy for demonstrating the existence of an integral of /48

differential equations has been applied by other geometers to the demonstration

of a great number of theorems. Since this method and these theorems will be use-

ful later_ I am here forced to devote a preliminary chapter to it. For this ex-

position; I will make use of a notation which I have already introduced in another

memoir and which will eliminate delay and repetition for me.

Let _(x, y) and _(x, y) be two series developed in terms of the increasing

powers of x and of y; let us suppose that each of the coefficients of the series

is real and positive and greater in absolute value than the corresponding coef-

ficient of the _ series: we will then write

?(x,).)<@(x,y)

or_ if it is necessary to display the variebles with respect to which the devel-

opment is made,

? <_ (arg.z,y).

We easily see that, if _(x, y) is a series which converges for certain values

of x and 5 (consequently representing a function of x and y, holomorphic for x=y=O),

we will always be able to find two real and positive numbers M and _, such that

M M
?(x')_)< (,--_x)(,--_y) < ,--_(x _y)"

In the case where the function _ variables for x=y=O, we can write

?< i--a(x+y)
M_(.r +y) [,_-:(x _-.r)].

Let us suppose that _ besides the arguments x and y_ which we assume devel-

oped_ depends in addition on another variable t: the numbers M and _ will be gen-

erally continuous of t; if these two numbers do not cancel for any of the consid-

ered values of t_ we will be able to assign them a lower limit; we will therefore

be able to give M and _ constant values large enough for the preceding inequal-

ities to subsist.

21. Calculation of the inequalities defined in the preceding article rests

on the following principles_ and I will restrict myself to stating them without

demonstration because of their obviousness:

(i) If the series _ converges_ this will be true also for the series _ when-
ever we have

(2) We can add any number of inequalities of the same sense
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_1_: 'h, _., _. _,_."' .... _,,, "<@.-

(3) If we have an infinite number of inequalities of the same sense,

?o _o, ?_,<_.,, ..-, %< ."...... ad b_f. (arg. x,y),

we may write, introducing a new argument, _0t_?,+_'_,_...<+0+l_i+_'_,+... (arg. x,y,l).

(4) We can multiply two in_qualities of the same sense.

(5) If we have

_(_t, x, .... , xn) (< _(xt, x,, ..., xn) (arg. x,, x I.... , xn)

and, on the other hand_

f,(x,y)<O,(x,y), f,(x,y)<O,(z,y),

........... ,.,. ............. ,. ........... !

fn(x,)')'_Oj,(x,y) (arg. x, )'),

in equality (I) in place of Xl, x2, ..., x , we will be able to substitute, i_ then

first member fl' f2' "''' f and in the second member 01, 02, ..., 0 We mayn n

therefore write _.[f,(x,y),f,(x,y),...,f,,(x,y)]<+[O,(x,y),O,(x,y) ....O_(x,y)] (arg._,y).

(6) It is permissible to differentiate the inequality

?(x,y)<,_(x,y) (arg. x,y), (i)

with respect to one of the two arguments x and y.

(7) It is permissible to integrate an inequality; but this can be understood

in two ways; we can first integrate inequality (i) with respect to one of the two

arguments x and y, taking zero as the lower integration limit.

We then find __o#_(:_'Y)d_<.f_°_(z"r)d:_"

It goes without saying that in the calculation of integrals, y must temporar-

ily be considered a constant.

(8) However, it may also happen that the functions %0 and _ depend not only

on the two arguments x and y, but on another variable t, without our regarding it

as developable in terms of the powers of this variable.

Let us assume that inequality (i) is true for all values of t between tO and

tl; we will be able to integrate this inequality with respect to t, regarding x

and y as constants, and to write f?(_,y,t)dt_fq,(x,y,t)dt (argx, y),

and t .
provided, of course, that the integration limits are included between tO i
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22. Let us consider a function

_(z.y),

developed in terms of the powers of x and y. We will find that frequently x and

y will depend on a certain parameter _ and that we will be able to develop them

in terms of the powers of this parameter. We therefore write

_ ---- X° '_' [axt'+ _x_-¢-'''' 1y .to + _.r, + _,'y,+ .. (i)

Let us assume that in the function _ we substitute in place of x and y their
• ad inf.;

developments (i); then q0 will become a function of _, Xo, Xl, .., Xp_ ...

and of Y0' YI' ..., yp, ... ad inf.; moreover, it will be developable in terms of

the powers of _, such that we will have

¢_ = O0-F- [/_1-l- _.t'_l-4- ....

Weeasily _ee that _odepends only on xo and YO; _l o_ xo, YO' xi, and Yi'

...; and in general, _p depends on x , x , ..., x ; Y , Y , ..., y
0 i p 0 i p

Let us now assume that we have

_(x,y)<@(x,y (arg. x,y).

In _ let us substitute, in place of x and y, their developments (i) such that
we have

We easily see that

- .o + _+,_ _"_,+ ....

9o<@o, (a,g xo, yo),

_.l_ _.t, (arg. xo, yo; x,, yj),

.... ,.,. oo ............... o .... , .......... ,._

?p<: +p, (arg. xo, xl, ..., xe;yo, yJ, ..., pp).

We realize this in applying the fifth principle of the preceding article_

which shows that

?.<9 (arg. y, xo, x,, ... ad ]nf.;yo, y,, ... ad inf.).

For brevity we will agree to write q0p (xi, yl) in place of q0p (x , x , ..., x ;

YO' YI' "''' Y )" 0 i P
P

Cauchy's Theorem

23. Cauchy's theorem is found today in all classical Treatises; I would

therefore restrict myself to stating it without demonstration, if I did not pro-

pose to complete it in several points.

Let us consider the differential equations
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d_ = O(x, y, z, F), dy dz

I assume that the functions _ and _ are developed in terms of the increasing

powers of the independent variable x, of the two unknown functions y and z and

of an arbitrary parameter b.

In assuming that the independent variable t does not enter the second members

of equations (i), I do not decrease the generality, because a system of the n

order, where the independent variable enters explicitly_ can always be replaced

by a system of the n+l order, where this independent variable does not enter.

In fact, for example, let

d_

d-i = _(x, y, t),

dy
= +(x, y, t);

it is obvious that these two equations can be replaced by the following three

dr
d--7= _(x,y, z), dz

dr" dt
27 = +(_' x, "_),

I propose to demonstrate that there exist three convergent series developed

in terms of the powers of t, b, Xo' YO' Zo, which satisfy equations (i) when

they are substituted in place of x, y and z and which reduce, respectively, to

x0' YO' and z0 for t=O.

Thus, instead of only developing, as Cauchy did, with respect to the independ-

ent variable x, I develop in addition with respect to the parameter _, and with

respect to the initial values Xo, YO' z0" However, I must first demonstrate two
new lemmas.

24. Let
dx

= _(z,y, t, t_), 1
!

"di = q_(z , .r , t, ,_)
(i)

be two differential equations, where _ and _ are given series, in terms of the

powers of unknown functions x and y, variable t and an arbitrary parameter b.

It is easy to verify that there exist two series

f(t, F), ft(t, F), (2)

ordered in terms of the powers of t and b, vanishing with t, and which, substi-

tuted into equations (I) in place of x and y, according to the ordinary rules of

calculus i formally satisfy these equations.

4O



In seeking to determine the coefficients of these series f and fl by the
method of indeterminate coefficients; we find that any coefficient of f (or fl)

is an integral polynomial with positive coefficients to the various coefficients
of _ and of 9"

Let us therefore consider other equations of the sameform as (i)

and which are such that

' _-_ - t,_), ._7 =+'(_,y,t,_),__=_(,), dr (la)'

if the series
_<_', _<_' (arg. x,y,t,?);

.t'(e, t,), y'(t, v) (2a)

are ordered in terms of the powers of t and _, vanish with t and formally satisfy

equations (la) when they are substituted in place of x and of y; it is permissible

to conclude that _ ,f _f, A < f_ (arg. t, F).

25. Let us again take equations (i) from the preceding article; let us assume

hat _ and 9 are developable in terms of the powers of x, y and b for all values

of t included between O and tl(ti>O) (we will agree to consider only the values of

t included between these two limits). I do not propose, however; that _ and Y be

developable in terms of the powers of t.

Then there will exist the series

f(t, _), A(t, $)

which will be ordered in terms of the powers of _ (the coefficient of any power

of b being a function of t, which can be nondeve!opable in powers of t), which

will vanish and which will formally satisfy equations (i).

How can we determine the coefficients of the two series f and fl ?

Let Xm be the coefficient of m in f; and Ym be that of bm in fl"

to determine x and y , we then find the following equations
m m

In order

d.T'o dj... 0

d-7 =?(xo, yo, to, o) ............................. _ =+(Xo, yo, t,o) ........................... ,

d_,. d? d9 _ dr., d+ d+ Ym+ Y,_,d_, d_ d_ x,, _/ = _;;_,,,,+ ax----,y,.-_-x,,,; dr_, = d+ _ ="d-t = _ x, + dy--_oy' -*- dt _oo" + 9", + Y,, --tiT" d-xo a_,,_+ _,

X and Y being developed in terms of the powers of
m m
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xl, yl; x_, y,; .-., x,.-z, y._-,,

and on the other hand depending on Xo, YO and t.

d? d_i? _ d,_ x, y and b must be replaced by YO andFurthermore, in dx_' dy0' _' _ ' Xo'

O .

such that

Now let there be some equations

Let

dx 1-di = _'(x, y, t, _ _,

dy ,, t= _ (x, y, ¢, _),dt

(la)

@<+' arg. x, y and b, but not arg. t).

f'(t,_t) =x o +vx' t +_ x, +...,

f', ( t, _ ) : y'o -_:_ y _ + Wy', -+-...

be the given series in terms of the powers of _ and vanishing with t, which for-

mally satisfy equations (la).

We will have

dJ_o i s t

d--/- "_ ? (x°' Y0, t, o),

, ................... ,j

dx'_ d_' , d?' ,
_-7-= _'o x" + _ Y °' + x'-;

At the origin of times, we will have

and also

whence

_,y_
3F = q_'(:_o,yl,i,o),

........ ! ............ I

ay;,__d,.7 ,4,;,' ,
-aF - _-_ _'' + _+-,_Y"' -+ Y;''"

1

Yo : Yo ==-o

I,,Pl<+', (2)

[a_o I ax; a,-oI aye,-a-F < -a ' [_ < --;a_ (3)

x$ and y$, for the small positive values of t, are therefore positive and greater

in absolute value than x0 and YO"

Therefore I write

IZo[<X_, ly, I<y;. (4)
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Equalities (4) could not cease to be satisfied without inequalities (3)
ceasing to do so first. But it will not be so, because inequalities (4), related
to inequalities (2), imply inequalities (3) as consequences. Therefore inequal-
ities (4) will subsist whenever

o<t<tt.

I assume that we have also demonstrated that

l_',l<_',, Ix,I<=;, ..., I:',,,-,I< _-,-,; I
Iz,l<.r',, l.r,I<z;, .... !.r,,-,l<y',,-,, (5)

and I propose to demonstrate that

In fact, we conclude from inequalitites (5) that

[ d,_,] a+'a:o <_-70' Ix.,l<x', [Y,,,I< Y'.

We must therefore conclude that inequalities

imply the following:

lx:l<x_, ly=l <y_

A reasoning quite similar to the preceding would then show that we have

[xmI<z_, [yml<y_ for o<t<ti.

These inequalities can also be written

f<f, /,<_ (arg. _, but not arg. t).

26. Let us again take equations (i) from article 23

dx dy d-_
dt = 6 (x'Y' z' V')' ==_(x')"z'F)' =6'(x'Y'Z'F)" (1)

These equations are formally satisfied by certain series

x= fl(t,_'o,Yo, Zo,_t), t.,,=.r,<,,_o,zo,_o,_), (3)
_-- f3( t, xo,yo, _o, _),

developed in terms of the increasing powers of t, Xo, YO' Zo and _ and are reduced

respectively to Xo, YO and z0 for t=O.

To demonstrate the convergence of these series, let us compare them to the

series obtained starting with different equations.

We can still find three real, positive numbers M, _ and 8 such that by setting

M (1)
U -- _) [_ -- =(x +2" + z)J'
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we have

0<6' 1
? < ?' (arg x, y, z, F').

,_<+'

Let us consider the equations

which can also be written

dxid'-7= 0',

d.r
_7=_ ',

d--/=+"

(2a)

dx dy dz M
D-/ = -3_ = d-7 = (, -- [31.)[, -- =(x +y _ z )i (3a)

We can satisfy these equations by series analogous to series (3), that is a

power series in t, Xo, YO' Zo and _ and reducing in the same way to Xo, YO and z0
for t=O.

The principles of article 24 show that series (3) Will converge whenever series

(3a) themselves converge.

Now, equations (2a) integrate easily, and we find that equations (3a), which

are their integrals, can be written

' (s-¢s-,--hO,
*"ff _ 'Z'O -'1-

. = _,°+ s-- ds_-ht),

where we have set, for brev1_ty,

6_l_I
S -: i -- a(xo*-yo+ zo), h= I---_"

These series, developed in terms of the powers of _, t, Xo, YO' Zo' converge,
provided that

I1_1, Itl, 1:_o.I, tZot, l-'01

are sufficiently small.

The same will be true for series (3)-

Q.E.D.

Extension of Cauchy's Theorem

27 . The considerations developed in article 26 show the possibility of devel-

oping the solutions of a differential equation in terms of the powers of an arbi-

trary parameter b, but only for values of the independent variable t with a suffi-

ciently small modulus. We will now attempt to free ourselves of this restriction.
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Let us consider the following equations

dx dy (i)
d---_= _(x,y,t,F), -_--i= +(x,y,t,_).

Therefore I once more assume that the variable t enters the equations explic-

itly.

Let

x = 0(t,_), y = _(t._)

be that of the solutions of equations (i), which is such that the initial values

of x and y; for t=O, are zero.

I assume that for all values of t between 0 and tO the two functions _ and @

may develop in terms of the powers of

_, x-- O(t,o), y--_(t,o)

(the coefficients of the developments being any functions of t as well).

This condition can be stated in another manner: when for a certain system of

values of x_ y_ t and b one of the functions_ and 9 ceases being holomorphic, we

say that this system of values corresponds to a singular point of equations (i).

Consequently, we can state the condition which precedes by saying, in rather in-

correct but useful language, that the particular solution

= o, x = O(t,o), y = _(t,o)

is not going to pass through any singular point.

I say that if this condition is fulfilled, 8(t, b), _(t, b) will for all val-

ues of t between 0 and tO to be developable in terms o£ the powers of b (I say of

and not of t and b), provided that ibl is sufficiently small.

I first observe that we can, without loss of generality, assume that the func-

tions _ and 9 vanish identically when we here make

z:y=_=o

or, which is the same, that we have identically

e(t, o) = _o(t, o) =o.

If; in fact, this were not so, we would change variables by setting

x'= x --O(t,o), y'=y-- m(t,o)

and we would be led to the case which we have just stated, for the transformed

equations admit as a solution, for _ = O,

X'_O s _'_0.

Let us therefore make this hypothesis: the functions of _ and ¢ will be devel-

opable in terms of the powers of x, y and _; but I do assume them developed in

terms of the powers of t.

We will be able to find series (3) developed in terms of the powers of _ and

45



which, substituted in place of x and y, will formally satisfy equations (i).

Moreover, these series will vanish for

t=O.

To demonstrate the convergence of these series, let us form equations anal-

ogous to equations (2a) of article 26.

The functions _ and @ are developable in terms of the powers of x, y and _,
provided that

o<t<to.

When t varies from 0 to t_, the radii of convergence of these developmentsO
will vary as well_ but we will be able to assign them a lower limit. We will

therefore be able, according to article 20, to find two positive numbers M and

, such that for all values of t between O and to, we have

?<?', _<¥ (arg. x,y, Ft)
setting

_, t/= M(_-y+ v)[z+c,(x+y+_)].

Let us then form equations

dx dy=_,. (2a)

We can satisfy these equations by series (3a) in the same form as series (3),

and this will formally satisfy these equations.

According to article 25, series (3) will converge provided series (3a) con-
verge.

Now, if we set

.z'+y-l- _ : S,

our equations give

and

or

2

dS_ 2MS(S÷x)
dt I -- S

dS 2 dS
aMdt = -- --

$ S+l'

whence, because S:_ for t--O,

S F
aMt ----L (S + t)------_ -- L (_ + 1) t

We will easily verify that S and, consequentlyj x and y can develop in terms

of the powers of b and that the development converges for all values of t provided

that Ibl is sufficientiy small, we can conclude from this that series (3a) and /61

series (3) converge. Q.E.D.
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Applications to the Problem of Three Bodies

28. The results of the preceding article obviously continue to exist when_

in place of only one arbitrary parameter _, we have several. Here is the use

which we are going to make of this result_ in article 27 we considered only the

particular solution for which the initial values of x and y are zero.

Let us suppose we were to consider the particular solution for which these

initial values are x0 and YO' and that we were to propose to develop this solution

in terms of the powers of Xo_ YO and _.

However, we can go still farther: let us again take equations (i) from the

preceding article_ and let us consider this special solution such that

X == Xo_ y ---yo

for t=O; let us then seek to develop the values of x and y for t=to+_ in terms of

powers of Xo, YO' _ and T.

Let us then set

x ==x' + xo, y = y' -- ),,'o, t := t' t_ _ _.-)_-,

quations (I) will become

dx' _ tn /

dr' to-_ ? _x'+x°'Y'_Y°'t't')--=----t_-' _}'\

d)" tr, ( ,,to__x )dr' to -,- _ @ x"+" x°' y _ y°' t --_o ' _

We may regard x'_ y' and t' as the variables of _, T_ Xo_ Y0 as four arbi-

trary parameters.

The particular solution which we consider is such that, for t=O, we have

x =Xo, Y =Yo

and_ consequently,

We also have to calculate the values of x' and y' for t=t0+% i.e._ for t'+t O.

We therefore fall back on the case studied in the preceding article and we

see that x and y are developable in terms of the powers of x0, YO' _ and _, pro-

vided that the moduli of these quantities are sufficiently small. For that there

is only one condition: it is the particular solution_ for which the initial values

of x and y are zero and in which we assume in addition that _=0, does not pass

through any single point.

/62

Let us apply this to the equations of article 13

dxi dF dyl dF
-37 = _yi' -di - dx_'
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where

F- Fo-_ [-tFl-_y.lF2+ ...

and where F0 does not depend on y.

F will be a function of x and y which will cease being holomorphic only in

certain singular points. It may happen that, if we give x the following values

xt _x °, x2 =x °, ..., xp =x_,

the function F remains holomorphic for all the values of y.

Let us imagine that the following problem is proposed.

Let us consider the particular solution such that, for t--O, we have

_, = _ _ _., _, = _g ._ _,, ---, _, = _ _ _,

yt =y_+ _1, yt=-y_ _2, ..., y_=y_ ÷ _p,

and considering in particular the values of the variables for

t= t0+z _

to develop these values according to the powers of _, T, _ and _.

This development will be possible_ in fact, if we make at the same time

the particular solution considered reduces to

xt: x?, yt = nit + y_

(where n i is the value of dF---q0for x =xO), and, according to what we have just
dx i k k

assumed_ this solution passes through no singular point.

/63

Let us see what happens in the special case of the Problem of Three Bodies.

The function F can cease to be holomorphic only if two of the three bodies have

Just collided. The particular solution which we are considering represents, in

the case of _--0, the combination of two Keplerian ellipses described by the two

small masses under the attraction of a mass equal to i placed at the origin. In

order that a shock be produced, the two ellipses must intersect; now, this is what

never happens in astronomical applications.

We therefore arrive at this conclusion:

In the Problem of Three Bodies_ we will define the state of the system by
the twelve variables defined in article ii.

We are given the values x_-_i_y_+_ of these variables for t=O, and we

ask what will be the values of these same variables at the epoch t0+T.

We have just seen that these values are developable in terms of the powers

of the masses, of the _ of n and of T.
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There is only one exceptional case, the following: let us assume that for

t--O, the initial values of the variables are x_ and y_, and that, the masses

being assumed zero, the motion then continues according to Kepler's laws; if

under these conditions a shock is produced before the epoch to, what we have

just said would no longer be true.

We would be able to calculate, in this manner, a lower limit of the time dur-

ing which it is permitted to develop the coordinates of the planets as a power
series in the masses; but the limit thus obtained would be much too distant from

the precise limit for the calculation to present any interest.

Use of Trigonometric Series

29. Power series are not the only ones which may serve in the integration of

differential equations; trigonometric series are also used. I want to say a few
words about them here before beginning the equations with partial derivatives. /64

It is known that a periodic function of x with period 2w can be developed

in a series with the following form

F(x) = Ao+ Atcosz + A, cos2x +...+ Ancosnz-_...

BIsinx_Bisin2x+...+Bnsin nx+ ....

I have shown in the Bulletin astronomique (November, 1886) that if the func-

tion f(x) as weZl as its first derivatives p-2 is finite and continuous, and if its

__i) th derivative is finite but can become discontinuous in a limited number of

points,_" we can find a positive number K, such that we have, no matter how large

n may be,

InPA. I<K, InPB.[ <K.

If f(x) is an analytical function, it as well as all its derivatives will be

finite and continuous. We will therefore be able to find a number K, such that

In'A,l< K, In'Bnt<'K.

The result is that the series

[Aoi÷lAtl+lAzt÷...÷iA.l+-..

+{BtI+IBII+...+IB_i_...

converges and, consequently, that series (i) is absolutely and uniformly conver-

gent.

This granted, let us consider a system of linear differential equations

(2)
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SO,

be n

The n 2 coefficients _i,k are periodic functions of t

Equations (2) therefore do not change when we change

let

¢xt = _,,, (t), x,--+_,,(t), " .... x.---_,..(t_,
#

J_-,= +.,,(t), =, = _.,,(t) .... , =. = _.,.(t)

linearly independent solutions of equat:[ons (2).

with period 2w.

t to t+2w. This being

(3)

will

The equations do not change when we substitute t+2_ for t and

become

_,= _,., (t 4- 2r,),

x,= +.,,(t + _r,),

• . , x,,=@,,.(t÷2r.),

.... x,,=_,,.(t÷2r.),

•., =.= @.,.(t + 2_.)

the n solutions

They must
will have

values A being

therefore be linear combinations of the n solutions (3);

+,,, ( t 4- ==) = A_,, _,,, ( t ) + A,,, +,,, (t) + -_ A,,. @,,,,(t),

+,,, ( t 4- _=) = A:,, 4',,, ( t ) + A2,; 'p:, (t) -, ..... A,_,, +.., ( t ),

+n,,(t + _=) :- A,,,l_,l(t) _- A,,,,+,,,(t), ... + An,,_?,,,(t),

constant coefficients.

so that we

In addition_

This granted,

Let SI be one

similarly (with the same coefficients) we will have

@,., ( t + 2r.) = A,,, @,,,_ t) + A_ , _, ,( t) 4- .... A, o_ :_,t),
• ................ , .......................................

let us form the equation with S

Aj,_ -- S A=,, ... A,,n

A_.I A_,,--'S -.. Ai,,_
..... . ........... ° .... .,

An,, An,1 ,-. An,_-- S

of the roots of this equation. According to the

(5)

theory of

linear substitutions_ there will always exist n constant coefficients

Bh B1, ..., Bn,

such that if we set

0,,,(t) -= Bl_,,,(t) -+- B2_2,,(t) ÷ ... ÷ B,_,,,,(t),

and furthermore

Ol#(t) = Bl_l,i(t) -F B_,i(t) ÷... _- Bn_nj(t),
we have
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and furthermore

Let us set

we will have

e,,,(t+ _) = StO,,,-(t).

This equation expresses that

e-_,tOl,t(t)

is a periodic function which we will be able to develop in a trigonometric series

),,,,(t).

If the periodic functions q0i,k(t) are analytic, the same will result as from

solutions of differential equations (2) and from Xl,l(t ) . The series kl,l(t) will

therefore be absolutely and uniformly convergent.

Furthermore,

e-_,t Ol,t( t )

will be a periodic function which we may represent by a trigonometric series

Xt,t(t).

We therefore have a particular solution of equations (2), which is _ritten

_,= _a,,X,.,(t), _, = _a,'X,,,(t) ..... :_n= _a,'X,,n(t). (6)

A solution of form (6) corresponds to each root of equation (5).

If equation (5) has all its roots distinct, we will have n linearly independ-

ent and the general solution may be written /67

w, =Cteadlt,t(t)+Ctea,t_2,t(t)+,..+Cnea.tAn,t(t] )

_'t = Oread)'! t( t)-4- C_ea_t),t,t(t)-+-... + Cnea_t).n,t(t),
1

(7)(
:_,,= c, ,,,,, ).,,_(t)+ C,,a_'X,,,,(t _+... + C,,ea.' ;,n,,,(t,L

The C are integration constants, _ are constants, and k are absolutely and

uniformly convergent trigonometric series.

Let us now see what occurs when equation (5) has a double root, for example,

when _i=_2 . Let us again take formula (7); let us there make C3=C L...... Cn=o,

and let _2 tend toward _i"

or, setting

It will become

_t = ea't[Cl_,,,(t) -_- C_e(a'-atlt_,t(t)]

C, = C_--C._,

C,= C',
a 2 -- a I
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it will become

[ ' era'-a)t_'"_t)--)""ft']x, = eo,, c;x,,,(t)+ c, _____ .

It is clear that the difference

X,,, (t) -- _,,, (t)

will vanish for _2=_i . We will therefore be able to set

_,,,(t)= X,,,(t)+ (_,--_,)_'(O.

It will thus occur that

tt= ea't [C'i )_,,,+ C_ _t,t e{a'-a"t--' + C; _/(t)e(a,-a,'t]at _ al

and at the limit (for ot2=C_l), x, = Ct e-:X,,,+ C_ea,t[t)>l,t + lira _'(t)].

We would see that the limit k'(t) for _2=_ I is still an absolutely and uni- /68
formly convergent trigonometric series.

Thus_ the effect of the presence o£ a double root in equation (5) has been

to introduce into the solution terms of the following form

e,_tt_(t),

X(t) being a trigonometric series.

We would easily see that a triple root would introduce terms of the form

e°,'t ' _( t),
and so forth.

I do not stress all these detailed points. These results are well known from

the works of Floquet_ Callandreau, Bruns and Stieltjes, and if I have here given

the demonstration in extenso for the general case it is because its extreme sim-

plicity allowed me to do so in a few words.

Implicit Functions

30. If we have n+p quantities yl_ y23 ..._ y ; ., x among whichthere exist n relations n x13 x2' "" p

ft(Yt, Y,, ...,Y,a; x,, mz, ..., xp) = o, ]
ft(yt, yz, ., Ya ; Wt, a"t ..... ..Tp) O, !

/.(y,,y, ..... y.; =,, =, ..... =.) = o,)t
(7)

if values f are developable as power series in x and y and vanish together with
these _n+p Variables;

if finally the functional determinant of f with respect to y is not zero

when x and y vanish simultaneously;

#
we will be able to solve the equations (7) for the n unknowns y in the form

of a power series in xl, x2_ ..._ x n.
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Let us in fact consider x I as the only independent variable and Xl, x3,

..., xn as arbitrary parameters: we will be able to replace equations (7) by the

n partial differential equations

d/_ dr, , d/__., d/t_y,, d/,.
,_, d_, _ _>-; d%--,+"" + dy---;d_---7+ _,, = o i = ,, _,...,n).

The problem is thus reduced to the case with which we have just concerned

ourselves.

In particular, if f(y, Xl, Xl, ..., Xn) is a function that can be developed

as a power series in y and x, if for

_1 = X2=...=_n= O_

we have

and if y is defined by the equality

y will be developable as a power series in x.

31 . This result can be stated in another manner; let us in fact consider

any algebraic equation

f(_): o.

If; for a certain value Xo_ of x; f(x) vanishes without its derivative van-

ishing_ we say that x0 is a simple root of the equation; on the other hand_ it is

a multiple root of the n order if f vanishes together with its first n-1 deriva-

tives.

Furthermore; if we have any system of algebraic equations_ three for example;

namely
A(z,y, z)=o,

A(x,y,z)=o,

_(x,y, z) = o,

we will say that

is a simple solution of this system if for these values fl' fl' f3 vanish without
their Jacobian or functional determinant also vanishing.

We can retain the same definition when fl _ f2 and f3 rather than being whole

polynomials in x, y, z are holomorphic functions in x_ y_ z.
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The result of the preceding article can then be stated as follows:

have p equations (where the unknowns are YI' Y2' "''' Yp)

f,(y,, y, ..... yp; xL, x, ..... x_) : o,

f2(Yl, y, ..... yp; x,, x_ ..... xn)_= o,

fp(yl,y2 ..... yp; xl, xz ..... x,,) =: o,

whose first members are holomorphic, if, for

if we

the system of values

yl=y, ..... yp= o

is a simple solution of the equations, y can be developed as a power series in x.

If therefore we give x sufficiently small values, our equations will admit a real

solution.

Algebraic Singular Points

32. Let us consider an equation

/0",_)= o,

and let us assume that for

X_'= O,

f vanishes together with its first m-i derivatives with respect to y.

x=O, the value y=O is a solution of the m order of the equation.

(1)

Then, for

It can be demonstrated that there exist m convergent developments of y in

terms of the positive and fractional powers of x, vanishing with x and satisfying

the equation (cf. the classical works of Puiseux on algebraic equations).

However, these m convergent developments can be divided into groups in the

following manner.

Let

y= _lxP+_,_+...+,_x_+... (2)

be one Of these developments, and let I be a p-th root of unity.

The development

y = _I_xP + _2_x p +...+ anX"x _ +...

will also satisfy equation (i). From the development (2) we will therefore be

able _o deduce p-i other developments which with it will form a group.

I will say that this group is of the order p.

The sum of the orders of all groups is manifestly equal to m.

Am

/71
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Let us suppose that there are q_ groups of the order p; the sum of their

orders will be qpp, and we will have P

The coefficients of the pqp developments belonging to groups of the order p

will be given by algebraic equations of order pqp.

If pqp is odd, these equations will have at least one real root and at least

one of the developments will have real coefficients; if pqp is odd, and in addition

p is odd, the corresponding value of y will then be real.

However, if m is odd, at least one of the quantities pqp is odd; at least
one of the values of y must therefore be real.

If therefore m is odd_ equation (i) will then admit at least one real solution

for small values of x.

I add that the number of real solutions for small negative values of x are of

the same parity as m; I intend to refer t_ real solutions which vanish with x.

Elimination

33. Let us now consider an equation

l_y,_,,_ ....._) -,o (1)

and imagine that, wmaen y and x are zero_ f vanishes together with its first°m-i

derivatives with respect to y, but the m-th derivative does not vanish.

At the beginning of my inaugural Thesis on functions defined by partial dif-

ferential equations (Paris, Gauthier-Villars, 1879), I demonstrated that such an

equation can be transformed into another with the following form

_(y,_,,_,.....z_)= o,

where _ is a polynomial of degree m iu y, where the coefficient of ym is equal to

i, and where the other coefficients are ho!omorphic with respect to the variables

X°

If we suppose that m=l_ this equation in x reduces to

y-holomorphic function of x=O,

and we may fall back on the theorem of article 30.

I also showed in this same Thesis (lemma IV, p. 14) that: _i' _2' "''' _p

are p holomorphic functions in Zl, z2_ ..._ Zp, Xl_ x2, ..., Xp, if these func-

tions vanish when the variables z and the variables x vanish; if the equations
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_1----- ¢_z_..._ ¢_p =0

remain distinct when we set all the variables x=O; if finally we define the

variables z as functions of the variables x by equations

(2)

the p functions thus defined are algebraic; which means, according to the defini-

tion the thesis cited, that the equations (2) can be replaced by p other equations

of the same form, but whose first members are polynomials in the variables z.

This granted, let there be two simultaneous equations

_(x,y, z) = o, 1

+(_,,y, _) = o, I (3)

defining y and z as a function of x; I assume that the first members are holo-

morphic in x, y and z and vanish with these three variables.

From two possibilities one; the first that the two equations remain distinct

when x=O; we will now be able, according to what we have already seen, to replace /73

the two equations by the two other equivalent ones_

_,(_,y,z)= o,

@_(z,y,_)= o,

whose first members will be integral polynomials in y and z; we may then, between

these two equations which have become algebraic, with respect to the two variables

y and z,'eliminate z_ for example_ and arrive at a unique equation

F(x,y)= o,

or, on the other hand, when x--O, equations (3) will cease to be distinct.

Howeverj a second ca_e is then presented.

We may be able to find a number _ such that equations (31 remain separate

when we make x= _.

Then, if we set x'=x-_ the equations remain separate from x'=O and we fall

back on the preceding case; we can eliminate z between the two equations (3) and

reduce them to a single equation between x' and y or, what comes to the same

thingj between x and y.

On the other hand, we may not be able to find a similar number _; but that

can happen only if equations (3) are not distinct; except for this exceptional

case_ elimination will therefore always be possible.

More generally, let
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?i (zl, =z,..., zp; x) = o, I_(zt, z, ..... zp;x) = o,

_p( zl, z_ ..... zp; x) = o

(4)

be p equations whose first members are holomorphic and which define the z as func-

tions of x; if these equations are separate, we will always be able to eliminate

z2, z)_ ..., Zp among these p equations and reduce them to a single equation of

the same form

F(_,=,)-- o.
(5)

I assume that equations (L) are still distinct for x=O and, consequently,

that F is not divisible by x.

I assume that _i' _2' ..., _p vanish with z and x, such that

..... o (6)

is a solution of system (4) for x=O, and that Zl=O is a solution of equation (5)-

If Zl--O is a solution of the m order of equation (5), I will say also that

solution (6) is a solution of the m order of the system (4).

If the solution is of an odd order, we may affirm that equation (5) and con-

sequently system (4) still admit real solutions for small values of x.

Theorem of the Maxima

34. Let F(z I, z2, ..., Zp) be any function holomorphic with respect to z;

we know that we will find all maxima of this function in solving the system

but we also know that not all solutions of this system correspond to maxima.

I say that a necessary but insufficiently well understood condition for a

solution to be able to correspond to a maximum of F is that this solution be of

an odd order.

This is obvious if there is only one variable zI and only one equation

dF

a-_] = o.

We know_ in effectj that there can be no maximum here if the first deriv-

ative of F which does not vanish is not of an even order.
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Let us extend the same result to the general case and, in order to fix these

ideas, let us consider the case of only two variables zI and z2. Let us regard

zI and z2 as the coordinates of a point in a plane; we can always assume that we

have taken as origin that point which corresponds to the maximum_ in such a man-
ner that this maximum occurs for

_1 _ _| = O.

We will then be able to describe around the origin a very small closed curve C,

such that in all points we have

F(z,,zj) < F(o,o).

However_ even more,we can assume that this curve has as its equation

F(z,,z,) : F(o,o)-- t',

k being a very small constant_ and that in the interior of this closed curve C
we have

F(z,,z2)>F(o,o)--lt;

as a consequence, when we cross the curve C in going from the exterior to the in-

terior, F will be increased.

What is to be established is that

is an odd-order solution of the system

dF dV

_:_:o,

which is equivalent to saying the following: let

F(z,,z_,_)

be a function of zI and of z which reduced to F(Zl, z ) for _--O.2 2

The system

dF gF
dz--]=_] =o (i)

has_ for b=O; a multiple solution which is

• ! = 21 == O )

but we can always choose the function F(Zl, z2, _) (which is given us only for

_--Oj ahd which remains arbitrary for the other values of _)_ in such a manner

thgt for the values of _ differing from zero this same system now has only

simple solutions. Thusj what is to be established is that if b is sufficiently

small_ there is, in the interior of curve C, an odd number of these simple sol-
utions.

In my memoir_ "Sur les courbes d$finies par les equations dlfferentlelles
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(Concerning curves defined by differential equations) (IVth part, Chap. XVIII,

Journal de Liouville, 4th series, Vol. II, p. 177), I had occasion to study the

distribution of singular points of a system of differential equations and to de-

fine for it the Kronecker index of a closed curve or of a surface closed with re-

spect to this system of differential equations.

The system which we must consider here is the following

and, more generally,

dzt dz_
- d_'" = -dr (2)

dzl dz_ dz,,

The singular points of system (2) will be the solutions of system (i).

We must calculate the Kronecker index of the closed curve C with respect to

system (2). We can verify that it is equal to i for _=0, and from this conclude

that it will be equal to i for small values of _, because it can vary only if one

of the solutions of system (i) happens to cross this curve C.

The number of singular positive points of system (2) situated inside C is

therefore equal to the number of the singular negative points plus one.

The total number of singular points, i.e., the total number of solutions of

system (i), assumed simple, situated inside C_ is therefore odd.

Q.E.D.

This reasoning is applicable without change to the case where there are more

than two variables.

New Definitions

35. For the moment I will not speak of the application of Cauchy's methods /77

to differential partial equations, so as not to prolong these preliminary remarks,

although I reserve the right to return to this question later.

I will end this chapter by giving a new extension to the notation (from arti-

cle 20.

Let _(x, y, t), Y(x, y, t) two power series in x and y, such at the co-
efficients are periodic functions of t, developed in terms of the sine or cosine

of multiples of t or, what amounts to the same thing, in positive and negative

powers of eit.

Let us therefore consider the development of _ and _ in terms of the powers

of x, y and eit; if each coefficient of _ is real, positive and greater in abso-

lute value than the corresponding coefficient of _, we will write
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? <.dt (arg. X, y, e'-it).

If the series Y is convergent for

_= Ix07, y=ly0f,

the series _ will converge for

x= x°, y=yo, t = any real quantity.

I add that it suffices that series _ converge when t=O in order for it to
converge whatever t may be.

If the series _(x, y, t) converges and if it represents an analytic func-

tion, the convergence is absolute and uniform, as we have seen in the preceding
article.

We can therefore find a real positive constant _ and a function M of t_
periodic and of period L%7, which are such that:

(!) the development of M, in positive and negative powers of e it, has all

its coefficients real and positive;

(2) we have
M

?< I-- ,,(x +y) (arg'd"Y'e_-it)"

We will therefore have afortiori, whatever t may be,

M0

?< I-- =(x+yi (arg. x, y),

M0 being the value of M for t=O.

In fact, let

? = _,_xmynePlt ;

it will follow that

_ =__ ZAp2xmyneMt .
dt _

This series must converge, by hypothesis, for all real values of t and for

the values of x and y which are within the circle of convergence. Let us assume,
for example, that convergence takes place for

!

x_y= -.

The terms of the series must be limited in absolute value, so that we will be able

to write, calling K a positive constant_

If we set

it will follow that

_m-_

IAI < -_--K.

_ K epic
_I = ___,

M M
'_ < (,--_x)(t--_y) < I-- a(x+y)"

6o
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CHAPTER 3. PERIODIC SOLUTIONS

36. Let

dxg =x, .., (1)dt

be a system of differential equations where values X are uniform given functions

of Xl_ x2_ ..._ xn.

Now let

_, = _,(t), _,= ?,(,), ..., z,, = %(t), (2)

be a particular solution of this system. Let us imagine that at the epoch T the

n variables xi take on their initial values_ so that we have

_i(o)= _,(T;.

It is clear that at this epoch we will have exactly the same conditions as

at the epoch 0 and_ consequently_ we will have_ whatever t may be_

%.(t) = 9/(t+ T).

In other words the functions _i will be periodic functions of t.

We say then that solution (2) is a periodic solution of equations (i).

Let us now assume that the functions X i depend not only on the xi, but on

time t. I imagine_ moreover_ that values X i are periodic functions of t and that

the period is equal to T. Then_ if the functions _i are such that

?i(o) = _j(T),

we will still be able to conclude that

?i(t) = _.i(t + T),

and solution (2) will still be periodic.

Here is another case somewhat more complicated. Let us assume once again

that functions X. no longer depend only on x but are periodic functions of the
1

first p of x, namely x I, x2, ..., Xp, in such a way that functions X i do not

change Xl. into Xl+2rr, or x 2 into x2+_-r_ ..., or Xp into Xp+_r.

/8o

Let us now imagine that we have
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?l{T)=_t(o)-+-2kl_, %(T)=92(o)+2k_ , ..., ?v_T)=_p(o)+_/

?p+l(T)=?p+l(o), _p+2(T)=?p+_(o), .... q_o(T)=%(o),

kl_ k2_ ..., k being integers.
P

At the epoch T, the first p variables of x will have increased by a multi-

ple of 2w, the last n-p will not have changed; X. will therefore not have changed,
i

and we will find again the same conditions as at epoch 0. We will therefore have

?i(t + T) = 9i(t) -+- 2k_r.

_(t--_- T) = _-(t)

(i_-i, _, ..._p),

(i=p+l,p+ 2, ..., n).

We will still agree to say that solution (2) is a periodic solution.

Finally it can happen that a convenient change of variables causes the appear-

ances of periodic solutions_ which we would not encounter with the old variables.

Let us again take, for example, equations (2) from article 2

e,,_ a_ ev

dt I +an _ = _ + n'rj.

It is a question, we recall, of the motion of a point related to two moving

axes 0_ and 0_ and subject to a force whose components relative to these two

dV dV

axes are _ ands. In many applications, V depends only on _ and on _ and the

equations admit particular solutions such that _ and fi are periodic functions of

t, the period being equal to T.

/81

If we had related the point to the fixed axes Ox and 0y, we would have had

_r = _ cosnt -- _ sinnt,

y = _ sinnt-+- vIcosnt,

and x and y would not have been periodic functions of t unless T is commensurable

with 2_
n

A periodic solution may thus appear in passing from the fixed axes to moving
axes.

The problem which we are going to treat here is the following.

Let us assume that in equations (i) functions X i depend on a certain para-

meter _; let us assume that in the case of _=0 we have been able to integrate the
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equations, and that we have thus found the existence of a certain number of

periodic solutions. Under what conditions will we have the right to conclude
from this that the equations will still admit periodic solutions for small val-

ues of _.

Let us take for example the Problem of Three Bodies: we agreed above (art.ll)

to call _2_ and _3_ the masses of the two smallest bodies, _ being very small and

_2 and _3 finite. For _=0, the problem is integrable_ each of the two small bodies

describing a Keplerian ellipse about the third; it is easy to see then that there

exists an infinity of periodic solutions. We will see later that it is permissi-

ble to conclude from this that the Problem of Three Bodies still admits an infinity

of periodic solutions, provided that _ is sufficiently small.

It seems at first that this fact can be of no interest whatever for practice.

In fact, there is a zero probability for the initial conditions of the motion to

be precisely those corresponding to a periodic solution. However, it can happen

that they differ very little from them, and this takes place precisely in the case
where the old methods are no longer applicable. We can then advantageously take

the periodic solution as first approximation, as intermediate orbit, to use Gyl-

d_n's language.

There is even more: here is a fact which I have not been able to demonstrate /82

rigorously, but which seems very probable to me, nevertheless.

Given equations of the form defined in art. 13 and any particular solution of

these equations, we can always find a periodic solution (whose period_ it is true,

is very long), such that the difference between the two solutions is as small as

we wish, during as long a time as we wish. In addition, these periodic solutions

are so valuable for us because they are, so to say, the only breach by which we

may attempt to enter an area heretofore deemed inaccessible.

37. Let us again take the equations

d:r__,..:Nl. (i_ I, _, ... n), (l)
dZ

of timeare functions of the n unknowns Xl, x2, ..., xn,assuming that values X i

t and of an arbitrary parameter _.

Let us assume, in addition, that these functions are periodic with respect to

t and that the period is 2w.

Let us imagine that, for _=0, these equations admit a periodic solution of

period 2w

in such a way that
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_,(o)= _;(az?.

Let us attempt to see if equations (1) will still admit a periodic solution

of period 2w when _ is no longer zero, but very small.

Let us consider now any solution.

Let _i(0]+8i.. r be the value of x. for t=O; let _i(O)+_i+gi be the value of x.
i I

for t=2w.

The 9i will be, according to the theorem from art. 27, holomorphic functions

of b and of the _i' and these functions will vanish for

In order to express the fact that the solution is periodic, it is necessary

to write the equations

+,:+,.....+o o. (1)

If the functional or Jacobian determinant of the 9, with respect to _, is not zero /83

for b=_i--O, the theorem from art. 30 tells us that we can solve these n equations

with respect to _ and that we find

_ : o_(_),

Oi(b _.being developable in powers of _ and vanishing with _.

We must conclude from this that for values of _ sufficiently small, the dif-

ferential equations admit one more periodic solution.

This is true, if the Jacobian of the _ is not zero or, in other words, if for

b=O equations (i) admit the system

_,= _,..... _=o

as a simple solution.

What will now happen if this solution is multiple?

Let us assume that it is multiple of the order m. Let m1 be the number of soi

lutions of system (1) for small positive values of b, and m 2 the number of solutions

of this same system for small negative values of b; I intend to refer to solutions

such that _i' B2' "'" _n tend to 0 with _.

According to what we have seen in articles 32 and 33, the three numbers m,
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mI and m2 are of the same parity. If therefore m is odd_ we will be assured that

there still exist periodic solutions for small values of _ both positive and neg-

ative.

If mI is not equal to m2, the difference can only be an even number; it can

therefore result that, when we cause _ to increase in a continuous manner, a cer-

tain number of periodic solutions disappear at the moment when _ changes sign (or

more generally, when nothing distinguishes the value _=0 from other values of _,

at the moment when _ passes by some _0); however, this number must always be even.

A periodic solution can therefore disappear only after being fused with an-

other periodic solution.

In other words, the periodic solutions disappear by pairs in the manner of

the real roots of algebraic equations.

According to art. 33, we can eliminate between equations (i) the n-i variables

81, 82, 83_ ..., 8n_l , and obtain a single equation

¢(_.,F)= e (2)

whose first member is holomorphic in 8n and _ and vanishes with these variables.

If we consider for a moment 8n and _ as the coordinates of a point in a plane,

this equation represents a curve passing through the origin; a periodic solution

corresponds to each of the points of this curve.

We will therefore be able to realize all of the circumstances which can pre-

sent themselves by studying the form of this curve in the neighborhood of the

origin.

An interesting special case is the one where, for _=0, the differential equa-

tions admit an infinity of periodic solutions.

Let

xL = _.,(t, h), x_---- ?_(t,h), ..., x. = ?,,(t, h)

be a system of periodic solutions containing an arbitrary constant h. No matter

what this constant may be, the functions _i are periodic of period 2h7 with respect

to t_ and they satisfy the differential equations when we substitute them there

in place of the x, and make _--0.

In this case, for _=0, equations (i) are no longer distinct, and equation (2)

must be reduced to an identity.

Then the function @ must contain _ as a factor and reduce to _@i' in such

/84
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a manner that curve (2) decomposes into a straight line _=0 and another curve

_i=o,

A periodic solution corresponds to each point of this curve @i=0, so that

the study of this curve will allow us to know the various circumstances which may
present themselves.

However, this curve @i=0 does not always pass through the origin.

We must therefore, above all, make use of the arbitrary constant h in such a

way that this curve passes through the origin.

Another special case which seems to me to be worthy of interest is the follow-

ing: Let us assume that we have found by any means that curve _=0 presents a /85

branch B passing through the origin. A periodic solution will correspond to each

of the points of this branch. Let us imagine, in addition, that we know in any

manner that branch B is not tangent to the straight line _=0; let us assume finally

that the functional determinant of the _ with respect to the B is zero. From this
we will conclude that

and, as branch B is hypothetically not tangent to the straight line _=0_ we will
have to have

d_

d_

This shows that the curve @=0 presents at the origin a multiple point: con-

sequently one or several branches of the curve other than B will pass througl_ tLe

origin. Save for exceptional cases to which we will return later_ at least one of
these branches is real.

There will exist_ therefore_ apart from periodic solutions corresponding to

branch B_ another system of periodic solutions_ and the solutions of the two sys-

tems will blend into only one for _--0. Here is a circumstance where this case will

appear.

Above we called

Vi(o) + [3i

the value of xi for t=O and

the value of x i for t=2_.

In the same way, let us call
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the value of x i for t=2kw_ k being an integer.

I suppose that for _=81=82 ..... 8n=0 the functional determinant of # with

respect to 8, which I call g_ does not vanish, whereas the functional determinant

of the _' with respect to the 8, which I call A', does vanish.

From the fact that A does not vanish_ we can conclude that there exists a

periodic solution, of period 2w, which reduces to

/86

at= _(t)

for _=0. If we construct the curve

_--0

corresponding to the periodic solutions so defined, this curve will pass through

the origin_ and its tangent will not be the straight line _--0, because A is not

zero.

However, a solution of period 2w can be equally regarded as a periodic solution

of period 2kw.

Let us therefore seek the periodic solutions of period 2knv. To do so, we will

have to solve the equations

t

Be eliminating among these equations 81, 82, ..., 8n_l , we will obtain a single

equation

_,'(_3., FO= o

which_ according to our conventions_ will represent a curve passing through the or-

igin.

We must again find our solutions of period 2w; therefore curve @=0 will be

one of the branches of the curve 6'=0(¢' will therefore be divisible by _)_ and

this branch will not touch the straight line _=0.

Moreover_ since A' is zero_ we will have

Therefore the origin is a multiple point of curve @'--0. There exist, there-

fore, solutions of period 2kw_ distinct from the solution of period 2w and merging

with it for _=O.

67



There are several exceptional cases to which we will return later.

I still have to speak of the case where equations (I) from art. 36 admit an
integral

F(xi, x_ ..... xn, t) = const.

whose first member (which I will for brevity write as F[xi, t]jis a periodic func-

tion of t of period 2w. /87

I say that in this case equations

+, = +, ..... _ -: o

will in general not be distinct.

(1)

In effect_ we will have identically

F[¢?i(o)'+_i;o]=F[gi(o)-+-_i+_,-; 2_]--= F[9i(o)-+-_i-i-6;..,, oJ.

Let us therefore consider equation

v[_,<o) + _,÷ +i, _- v[?,(o)+ _,, o]- o. (3)

The first member can be developed in terms of the powers of _i_ _i and _; in
addition, it vanishes when the _i vanish.

Let us assume that we do not have

dF

dwn
-----0

for xi:_i(O), b=O.

The derivative of the first member of (3) with respect to *n does not vanishfor

@i---- o_ _i----- o, pt : o.

Therefore 3 by virtue of the theorem from art. 30, we will be able to eliminate
from equation (3)

@n=0 b ,_ ..... ?,,_,, ..

0 being a series developed in terms of the powers Of_l, _2' "''' _n-l; BI' B2'

"''_ _n and _ vanishing when we have_ at the same time,

@t----- @2-----.--:@,,-t:o.

The n-th of equations (i) is therefore a consequence of the first n-l.

If we had dF dF

d_--;= o, _i _ o

68



for xi=ffi=(O), it would be the first of equations (i), a result of the last n-l.

In any case, equations (i) will not be distinct. There would be an exception

only if we had at the same time

dF dF dF

dxt -- dx2 ..... _ = o

for ×i= (°)'

We will therefore suppress one of equations (I), for example,

/88

(if dF _0), and then solve, with respect to _, the system 41=@2 ..... @n_l=O, to
dx n

which we will add an n-th arbitrarily chosen equation, for example,

_i=arbitrary const, or F=C,

(C being a given constant).

For each value of _ there is therefore an infinity of periodic solutions of

period 2w; if, nevertheless, we regard the constant C (to which F is equated) as

given condition of the problem, there are not generally more than one.

If instead of one uniform integral, we had two

F (xs, x2, ..., Srn, t) -_ co:_.,t.,

Ft(xl, x2 .... , xn, t) : coa.'t.,

the last two equations (i) would be a result of the first n-2, provided that the

Jacobian

dF dFl dF dF.

dxa dxn-t dxn-, dr,,

is not zero for xi=_i(0), _=0.

We could then eliminate these two last equations

and replace them by two other arbitrarily chosen equations.

Case When Time Does Not Enter Explicitly Into the Equations

38. In the preceding we assumed that the functions Xl, X2, .. °, Xn, which /89

enter differential equations (i), depend on time t. The results would be modified

if time t does not enter these equations.

First there is a difference in the two cases which cannot be ignored. We

had assumed in the preceding that values X. were periodic functions of time and

that this period was 2w; this gave us the _esults that if the equations admit
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a periodic solution, the period of this solution would have to be equal to 2w

or to a multiple of 2w. If, on the contrary, values Xi are independent of t,

the period of a periodic solution and be of any duration.

In the second place, if equations (i) admit one periodic solution (and if

values X do not depend on t), they admit an infinity of such solutions.

If, in fact,

.r_ = 71 (t), x_= ?_(/; ..... x,, = ?.(/)

is a periodic solution of equations (i), it will be the same case, no matter what

the constant h is, for

:il=_.l(t+_), x_=?_(t--f,) ..... x_=?n(t+h).

Therefore, the case with which we first concerned ourselves, and for which,

for _=O, equations (i) admit one and only one periodic solution, cannot occur

if values X do not depend on t.

Let us therefore concern ourselves with the case where time t does not enter

explicitly into equations (I), and let us assume that for _=O these equations admit

a periodic solution of period T

z, = _,(t), x,= ?,(t) ..... _.= _n(t). (4)

Let 'z--_'(O)+_i be the value of x. for t=O; let 'z- -"_'(O)+Si+ei be the value of x.1 1

for t=T+ T.

The 4: will be holomorphic functions of _, BI, 82' "" "' 8n and of T vanishing
with the se±variables.

We therefore have to resolve with respect to the n+l unknowns /9o

_,, _,...... p.,

the n equations

+,=+, ..... (5)

We have one unknown too many; we can therefore arbitrarily assume a value, for

example,

n ---_ O.

We will then derive from equations (5) _], Bp, ..., _ and _ as holomorphic
functions of _ vanishing with _. This is posNiblN unless _le determinant
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d+t d'_t d'_, d+t

d_l d_t d_n-t d_

d+, d+_ d+.,. d+,

d+,, d+,, d+,, d+,
.... , . .

is not zero for b=_i=T=O.

If this determinant were zero, instead of arbitrarily setting _n=O, we would

set, for example, _i=O, and the method would not fail if all the determinants con-

tained in the matrix

d.', d.'-,, d.', ,4.'_

d.'..,., d+, d'h d'h

....... . .........

a+,, d+,, d¢,,, d+,,
d,3t d_l d_ dz

were zero at the same time. (It is to be noted that the determinant obtained by

eliminating the last column of this matrix is always zero for b=Bi=T=O. )

Since in general all these determinants are not zero at the same time, equa-

tions (I) admit, for small values of b, a periodic solution of period T+_.

Let us call /91

At, A2, • •., An, An+l

the determinants contained in this matrix; Ai will be the determinant obtained by

eliminating the i-th column in it.

The periodic solution, which has served us as a starting point and which belongs

to equations (i) for _=0, was written, we remember,

a,i--=_t(t).

!

I designate by q0_(t) the derivative of this function oPt(t) and here is what
£

I propose to demonstrg, te:

If _'n(O) is not zero, the determinant An cannot vanish without all the deter-
minants

AI_ A,_ . --, An_ An+t
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vanishing at the same time.

In fact, if we assume that all these determinants are not zero at the same

time and that An is zero, I say that _'n(O) will be zero.

The differential equations not containing time explicitly will still admit

for _ =0 the periodic solution

xi= ?i(t-_hl,

no matter what the constant h may be.

If therefore we make

---o, _---o, _i--= ?;(I_) -- ?,(o),

the 4 will vanish, no matter what h may be.

This will continue to be true if h is infinitely sma'll, which gives us the

relations

d_t ,.. d+i ,.. d"_i
_ _.,_o)-+ a7,?,:, -. + _ ?;,{o) (6)

(i=,,2 ..... n).

These relations (6) first will show that An+ I is zero.

Additiona!ly_ there cannot be among the quantities

d,5+ d+l
d_-,' d--T,

other linear relations of the same form, i.e., of the form /92

d_t d+t d+i
At _-_+ At Ty_;+... +A,_ T_n+ An+, "-d--_=o (2)

(i= ,,2 ..... n).

Without this_ in fact, all determinants Ai would vanish at the same time.

We have assumed that An is zero. However, this determinant is nothing other

than the functional determinant of 41, 42, ..., 4n and _n with respect to 61, _2'

"''' _n and _. To say that this determinant is zero is therefore to say that we

have among the derivatives of the 4 relations of the form (2), and in addition that

i,eo,

A, _ + A, 7/_7+... + A,, _-_ + h_+t --d7 = o,

.A. n _ o,
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However, here there cannot be relations of the form (2) other than the re-

lations (I). We have therefore

A_ = _(o)

and consequently

If therefore _'n(0) is not zero (and we can always assume so; for if it wer@

not so, a change of appropriate variables would suffice to lead us to this case),

it is unnecessary to consider all determinants Ai: considering An suffices.

If An is not zero, we will solve with respect to the _ the equations

9,=@, ..... +.= _.=o. (3)

It appears at first that the arbitrary introduction of the equation _n:O

limits generality and that we can thus find only the periodic solutions, which

are such that _n is zero for t=O. However, we will obtain the others by changing

t into t+h, h being any constant.

If, on the contrary, An is zero, we will eliminate _2, 83 , ..., Bn and T among

equations (3), and will obtain a single equation /93

¢(_,,_}--o

analogous to the equation of the same form from the preceding article.

This equation may be regarded as representing a curve passing through the ori-

gin, and the study of this curve will permit us to become familiar with all the

circumstances which might present themselves.

We will meet as well absolutely the same particular cases as in the preceding

article.

For example, the periodic solutions, when we make b vary in a continuous man-

her, can only vanish in pairs, in the manner of roots of algebraic equations.

It might also happen that, if we make _=0 and 8n=O, there exists an infinity

of periodic solutions. Then @ is divisible by b, and we may write

in such a manner that curve }=-0 has two segments, the straight line _=0 and the

curve @i=0. It will in this case be advantageous to replace the equation

_----=O
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by the equation

_h_ -= O.

It will even happen that some of the functions _i are divisible by _, in such a
manner that; for example_

f

91' 42; @3 being holomorphic functions of b, of _ and T.

It will then be advantageous to replace equations (3) by the following:

_.:o, +;:+_=_:o, ,_,:+,..... +.:o

We will see examples of this in the following text.

If we suppose that there exists an integral

F(_'l, x...... , x,_) : const.,

equations (3) are no longer distinct and we replace them advantageously by the
following

_,_= o, F -* C + )._, _,,: _,,..... +,, : o,

where

c = F[?,(o),._2(o)....._,,,to)],

/94

while X is an arbitrary constant.

We will also be able to replace equations (3) by

!_,,= o, ._= o, +, = +_..... +.,= o.

from which there results this important consequence: in the general case, for

small values of b there is no periodic solution having the same period T as for

b=O; on the contrary, if there exists an integral F=const., we will be able to

find, providing that _ is sufficiently small, a periodic solution having precisely

this value T as a period.

In fact; if we do not have

dxt

for

the equations

_,.=_(_,),

@,= @,..... +.--o
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imply _i=0.

Here is another circumstance that we have encountered in the preceding arti-

cle and which we again will find here.

Let _i be the value of x i for t=O, _i+_i be the value of x i for t=T+_, and

_i+_ be the value of x i for t=kT+_ k being an integer.

Let us imagine that the functional determinant of the _i _ with respect to

61' _2' "''_ _n-l' T is not zero, but that the functional determinant of _ is

zero.

Let us eliminate _2' B_, "" "' _n and • among the equations

_ = o, _ = o;

we will obtain the single equation

which we will regard as representing a curve; this curve has a simple point at

the origin.

Let us now eliminate _2, _3' "''' _n and • among the equations

we will have

@',= o, _ = o;

We would see_ as in the preceding article_ that @' is divisible by 4. The

curve 4=0 can therefore be regarded as one of the branches of the curve @'=0;

since the functional determinant of 41 is zero, we should have
l

d_'

Therefore, either the curve @'=0 has several branches passing through the

origin_ or on the other hand_ it must be tangent to the straight line _=0.

But already we are familiar with one of the branches of the curve @'=%

namely _=0, and we know that the tangent to this branch is not the straight line

_=0. Therefore the curve _'=0 has other branches passing through the origin.

This means that these differential equations admit periodic solutions of

which the period is little different from kTj which are distinct from the periodic

solutions of period T for small values of _, but which converge to them for _=0.

/95
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Application to the Problem of Three Bodies

39. Does the Problem of Three Bodies admit periodic solutions?

Let us again take the notations of article II and let us designate the three

masses ml, _2 Z and a3b. If we make _=0, i.e., if the two small masses are re-

garded as zero, the large mass will be fixed and each of the two small ones will

describe about the large one a Keplerian ellipse.

It is clear, then, that if the average motion of these two small masses

are commensurable to each other, at the end of a certain time the entire sys-

tem will again be found in its initial position, and consequently the solution

will be periodic.

This is not all: instead of relating the three masses to fixed axes (or to

movable axes which remain constantly parallel to the fixed axes, as in article ii),

we can relate them to movable axes moving with a uniform rotational motion.

It can happen that the coordinates of the three masses, with respect to the /96

fixed axes, are not periodic functions of time, although the coordinates with re-

spect to the movable axes will on the contrary be periodic functions of time (cf.

article 36).

Let us assume now that D=O; the two small masses will describe Keplerian el-

lipses; let us assume that these two ellipses are in the same plane, in the plane

of the Xl, x2, for example, and that their eccentricity is zero. The motion of

the two small masses will then be circular and uniform; let n and n' be the mean

motions of these two masses (n'>n).

Let us assume that the origin of the time has been chosen at the moment of

conjunction; such that the initial longitude of the two masses is zero.

2_
At the end of time n'-n these longitudes will have become, respectively;

n'-- n and ,--__,

and their difference will be equal to 2w.

The two masses are again in conjunction_ and the three bodies will again be

in the same relative position. The entire system will have turned through an
2_n

angle equal to-
n' -n

If, therefore_ we relate the system to two movable axes turning with a uni-

form motion with an angular velocity equal to n, the coordinates of the three

bodies with respect to these movable axes will be periodic functions of the time

2n

of period n'-n °

From this point of view, and according to what we have said at the end of
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article 36, this solution can still be considered as periodic.

Thus, in the limiting case where _=0, the Problem of Three Bodies admits

periodic solutions. Do we have the right to conclude from this that it will still
admit them for small values of _? This is what the principles of articles 37 and

38 will permit us to decide.

The first periodic solution which has been indicated for the case where _=0

is that discovered by Lagrange and where the three bodies describe similar Kep-

lerian ellipses_ while their mutual distances remain in a constant relationship L97

(of. Laplace, Mecanique celeste, Book X, Chapter VI). This case has been too well

studied for us to repeat it.

Hill, in his quite remarkable researches on lunar theory (American Journal of

Mathematics, Vol. i), has studied another one_ whose importance is much greater

from the practical point of view.

i again took up the question in the Bulletin astronomique (Vol. !, p.65) and

I have been led to distinguish three types of periodic solutions: for those of

the first type, the inclinations are zero and the eccentricities quite small; for

those of the second type, the inclinations are zero and the eccentricities finite;

finally, for those of the third type, the inclinations are no longer zero.

For these as for those, the mutual distances of the three bodies are periodic

functions of time; at the end of a period, the three bodies again are found in the

same relative position_ the entire system having turned only by a certain angle.

It is therefore necessary for the coordinates of the three bodies to be periodic

functions of time, that they be related to a system of moving axes moving with a

uniform rotational motion.

The speed of this rotational motion is finite for first-type solutions and

very small for those of the two latter types.

Firs_Type Solutions

40. I am going to reproduce here what I have already presented on the sub-

ject of these three types of solution. I will begin with those of the first type,

which contain, as a particular case, that of Hill.

Let us again take up the notations from article ii. Let A;B_C be the three

masses_ which I will assume to remain constantly in the same plane. Let D be the

center of gravity of A and of B. Let Xl_ and x2 be the coordinates of B with re-

spect to the fixed axes having their origin in A; let x3 and x 4 be the coordinates

of C with respect to axes parallel to the fixed axes and having their origin in D.

Let us adopt the variables from article 12, i.e., the variables

A, x', _, _', p, p',

),, ),', _, _q', q, q'.

Here_ the motion occurring in s plane, we will have
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p----p':q=q':o.

The mutual distances of the three bodies and the derivatives of these dis-

tances with respect to time are fun__tions of

A_ A', _cos), -- _ sin ),, _sin),-+Tjcoq),,
_' cos),'-- _' sin),', _' sin),' ,+ _,"cos),' 1 (i)

and of _'-_.

In order for the solution to be periodic, it is therefore necessary that at
the end of a period the variables (i) resume their initial values and that _'-_

increase to a multiple of 2_, that isj _'-_ will increase by 2_.

If we have _=0_ the motion is Keplerian; let us assume that_ moreover_ the

initial values of _,_', _. _, _'., _' are zero; then the motion will be circular
and uniform.

If the initial values of A 0 and A' 0 of A and of A' are chosen in such a man-

ner that the mean motions are n and n' _ the solution will be periodic of the

2_
period -

n'-n"

Let us no longer assume now that _ is zero_ and let us consider an arbitrary

solution; we will be able to choose the origin of time'at the moment of a con-

junction and to take for the origin of the longitudes the longitude of this con-

junction.

The initial values of _ and _' will be zero.

Let AO+_I , A$+_2 be the initial values of A and A'.

Let _0' _' _$' KS' be the initial values of _,_, and _', _'.

These will also be the initial values of the four last variables (i).

Now let 2_+90 be the value of _t__ at the end of the period

At the end of this same period, let

be the values of A and Ar_ and let

be the values of the last four variables (i).
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In order for the solution to "_e periodic_ it is necessary that

+_: +,: +,:_,:+_= _:+_: o.

These equations are not distinct; the differential equations of motion admit

in fact two integrals: the vis viva integral and the area integral. The Jaco}ian

of these two integrals with respect to A and A' is not zero for

_o, _--_--_':_':o.

The equations _I=_2 =0 are therefore a consequence of the other five.

We therefore have to solve the system

to which we will adjoin the vis viva equation F=C. where we consider the constant

] a given condition of the problem.

It ls therefore necessary that we consider the functional determinant of the

first members of these six equations with respect to the six variables

_,, p,, h, _°, _;, G

and that we demonstrate that this determinant does not vanish for

Now; for _=0_ we have

= _,= #,= _0= _0=_'0 =G = o.

lr T'

and _' being constants depending on the masses_

{°= n-7-_n[ n +_/ -- Aol J'

_r s r • _ e r_i ",O (COS)'O -- I) -- "tl_ sin )'_ , {6 = _'_ sln_'_ + "_o( cOs)'O - I)'

where

( by,---" _+_IX'o- n'-.

L 0 and L_ therefore designating the values of the two longitudes at the end of the

period_ in such a manner that /i00
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We thus see that for _=0, F and _0 depend only on _i and _2; _3 and 44 on _i,_0

and _0; _5 and _6 on _2' _0 and _.$.

Our functional determinant is therefore the product of three others:
i

(I) that of F0 and _0 with respect [_i and [_2;

(2) that of _3 and _/4 with respect to [0 and T_O;

(3) that of _/_ and _6 with respect to [_ and 116.

The first of these three determinants vanishes only for AO=_, n=-n',this

not being of importance, because if it vanishes, instead of adjoining to the vis

viva equation system (2), we will adjoin there any other equation arbitrarily

chosen between _i and _2" No matter what it may be, the case of n=-n' presenting

difficulties of a diverse nature and having no importance from the point of view
of applications, we will leave it aside.

(2) The second determinant reduces to

(i--cos)_):÷ -_in')0.

It therefore can vanish only if X0 is a multiple of 2_.

For

we have

_o _ft._

Our determinant therefore will vanish only if n is a multiple of n'-n.

(3) In the same way_ the third determinant will vanish only if n', and con-
sequently n, is a multiple of n'-n.

As a consequence:

For all values of the vis viva constant C; _hich is equal to

y+ y',

and for small values of _, the Problem of Three Bodies will admit a periodic sol- /I01
ution of the first type whose period will be _-____.

n'-n

There will be an exception only if n is a multiple of n'-n or if n=-n'
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There is a four-fold infinity of periodic solutions of the first type; we
can in fact, if _ is small enough, arbitrarily choose:

• 2n
(I) the perlodn$)_n-----_=T;

(2) the constant C;

(3) the momentof conjunction, which we had taken in the preceding calcu-
lation for the origin of time;

(4) the longitude of conjunction, which we had taken for the origin of the
longitudes, such that we have, for each value of _ _ 4 periodic solutions.

We can obtain these solutions in the following manner.

Let us assumethat at the origin of time we have

I = I'----T,----T_'=o;

the three bodies will be in conjunction and their velocities will be perpendicular
to the straight line which joins them; this straight line will be the axis AXl,

which at this instant becomesthe samewith the axis Dx3. From this symmetry of

the position of the three bodies at the instant 0 the following consequencesresult
immediately:

The values of the vector radii, at instant t and at instant -t will be the
same; the values of the longitudes at instant t and at instant -t will be equal
and of opposite sign.

Wewill then say that at the epoch 0 the three bodies are found in symmetrical
conjunction.

Wehave assumedthat there is symmetrical conjunction at time 0 and that at
this momentthe commonlongitude of the three bodies is zero; we have thus deter-
mined four of the osculating elements _, _', _, I]' . Wewill dispose of them in

T
such a manner that st instant _ there is again symmetrical conjunction and that

2_
the commonlongitude of the three bodies is n-rl-_nor, more exactly, that we .have
(calling v and _' the true longitudes)

n_ _

_, n 9 _-_---_ n -F-_"

It is therefore not a problem, properly speaking, of a symmetrical conjunction,

but of a symmetrical opposition.

In order that there be symmetrical conjunction (or opposition), it is neces-

sary, as we have just seen, to have four conditions; we will therefore have four

equations to determine our four elements, which have remained arbitrary. These
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four equations may be resolved if the corresponding functional determinant is not
zero; now, this is not true in general: it is_ as we would see by easy calculation, -
completely similar to the one which precedes and which it is useless to reproduce
here.

Thus, the vector radii have the samevalue at the epoch t and at the epoch
-t; the samevalue still at the epoch t and at the epoch T-t (since there is still

T
symmetrical conjunction at epoch-_ . As for the difference of the longitudes, its

values at epochs t and -t (or still at epochs t and T-t) are equal and of opposite
sign. Therefore the mutual distances of the three bodies are periodic functions
whoseperiod is T. These solutions, which present alternately symmetrical conjunc-
tions and oppositions are therefore periodic solutions.

Wemight believe that the periodic solutions thus defined are less general
than those when existence we had first demonstrated. This does not matter;
there is also a four-fold infinity of these for we can arbitrarily choose the
epoch of conjunction and opposition, and the longitude of the three bodies at
the momentof this conjunction and of this opposition. Therefore there remain
four parameters, which showsthat all the solutions of the first t_e are in-
cluded in this samecategory. If we conveniently choose epoch O, there is for
all solutions of the first type a symmetrical conjunction at the beginning of
each period and a symmetrical opposition in the middle of each period.

We can make this clear in the following manner:

It is always permissible to assumethat the origin of the times has been
chosen in such a manner that the initial values of k and _' are zero. It suf-
fices here to take the epoch of a conjunction as origin of the times and the
longitude of this conjunction as origin of the longitudes.

On the other hand_ the equations of the Problem of Three Bodies present a
symmetry such that they do not changewhenwe change t to -t, or whenwe change
simultaneously _ to -_ and _' to -_'.

/103

If therefore there is periodic solution when the initial values of the var-

iables A, A' _, _' _ _' A_I, AO+_2' O, O, _0' _0' =', , , _ _', will be ' - _0' _0"

there will still be periodic solution when these initial values are

Equations (3) therefore do not change when we change % and T_ into -_0 and

Now these equations (3) have only one solution; we must therefore have

_' -- _ ----o,

which means that at the origin of time there is symmetrical conjunction.

Q.E.D.
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The 4 periodic solutions of the first type are related one to another by
s_mple relationships. Wecan pass from one to the other: (i) by changing the

origin of time; (2) by changing the origin of the longitudes; (3) by changing si-
multaneously the units of length and time in such a manner that the unit of
length is multiplied by kz/3 when that of time is multiplied by k. All these
changes do not alter the form of the equations and, consequently, can only change
these periodic solutions into the others. There is therefore, in reality, only
one simple infinity of truly distinct periodic solutions; each of these truly dis-

n'

tinct solutions is characterized by the relationshipS, or, which is the same,

by the difference between the longitude of a symmetrical conjunction and that of

the opposition which follows it.

Hill's Researches Concerning the Moon

41. There is a particular case where the solutions of the first type are

simplified: it is the one where one of the masses, the mass m 2 for example_ is

infinitely small. The motion of C with respect to A then remaining Keplerian,

there can be a symmetrical conjunction there only when C passes at the perihe-

lion or at the aphelion, at least that the motion of C is not circular. But the

longitude of a symmetrical conjunction should therefore differ from the longitude

of the symmetrical opposition which follows it immediately by an angle which should

be a multiple of _. Now this will not be true unless is integral, a case
!

n0-n 0

which we have precisely excluded. We must therefore conclude that the motion of

C is circular.

ZI04

The simplicity is greater if we assume that the mass of C is much greater than

that of A and that the distance of AC is very great (which is the case in lunar

theory). If we assume AC infinitely large and the mass of C infinitely large, such

that the angular velocity of C in its orbit remains finite; if, at the same time,
we relate the mass B to two moving axes, namely to an axis A_ coinciding with AC

and to an axis A m perpendicular to the first, the equations of motion will become,

as Hill has demonstrated,

_ d_ (__3n,) _=o !+ (i)

n designating the angular velocity of C.

Periodic solutions of the first type still subsist in this case and they are

those whose existence Hill first recognized, as I have said above.

They include symmetrical conjunctions and oppositions which can only take

place on the axis of _. However, they include still other notable situations
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which we could call symmetrical quadratures; under these circumstances BAC is the

right angle and the velocity of point B with respect to point A is perpendicular /105

to BA.

Yn fact, the equations include a symmetry which does not change when we

change _ into -_'; neither, therefore, should the periodic solutions change when

we change _ into -_. If, therefore, we consider the relative trajectory of point

B with respect to the system of movable axes A_ and Am, this trajectory is a

closed curve (since the solution is periodic), which is symmetrical at the same

time with respect to A_ and with respect to Am.

If, on the contrary, assuming the motion of C circular and taking for the

axis of _ the straight line AC, we had not assumed the distance AC infinite (if_

in other words, in constructing the lunar theory, we had taken account of the

Sun's parallax in continuing to neglect the inclination of the orbits and the Sun's

eccentricity), this relative trajectory would still have been a closed symmet-

rical curve with respect to the axis of _, but it would no longer have been s_-

metrical with respect to the axis of %

Equations (!) admit an integral which is written

V V
_\dt/ +2\dr/ -_--;

Hill has studied how the solutions of the first type vary when we increase

C; he recognized that the relative trajectory is a symmetrical closed curve, the

form roughly approximating that of an ellipse_ of which the major axis would be

the axis of the % When C is very small, this type of ellipse differs very little

from a circle_ and its eccentricity increases rapidly with C. For large values

of C_ the curve begins to differ greatly from an ellipse, but the relation of the

major axis to the minor continues to increase with C. Finally, for a certain

value of C_ which I will call CO, the curve presents two points of regress sit-
uated on the axis of % Hill t@rms this the orbit of the "Moon of maximum lun-

ation." His calculation, based sometimes on the use of series, sometimes on the

use of mechanical quadratures_ is much too long to find a place here; I will

state only that Hill has exactly constructed the curve point by point for various

values of C, and in particular for C=C 0. He can have here_ therefore_ no doubt

whatever concerning the exactitude of his results.

It is easy to realize the significance of these points of regress. I assume

that at any instant the relative velocity of mass B with respect to the moving

axes becomes zero such that we have at the same time

d_ dn
y/= -d-7 = o;

it is clear that the relative trajectory will present a point of regress.

This is how he arrived at his "Moon of maximum lunation."

Hill expresses himself as follows:
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"The Moon of the last line (i.e., the Moon of maximum lunation) is, of the

class of satellites considered in this Chapter, that which, having the longest

lunation, is still able to appear at all angles with the Sun and then undergo

all possible phases. Whether this class of satellites is properly to be pro-

longed beyond this Moon, can only be decided by further employment of mechanical

quadratures. But it is at least certain that the orbits, if they do exist, do

not intersect the line of quadratures and that the Moons describing them would

make oscillations to and fro, never departing as much as 90 ° from the points of

conjunction or of opposition."

There is here, on the author's part, only a simple intuition not resting on

any calculation or reasoning whatever. Simple considerations of analytical con-

tinuity permit me to affirm that this intuition failed him.

We first wonder if the solutions of the first type still exist for C>CG, or,

in other words, if the class of satellites studied by Hill can be prolongedVbe -

yond the Moon of maximum lunation. Let us assume, to this end, that at the origin
of the times mass B (i.e., the Moon) is in quadrature (on the axis of the _,

and that its relative velocity with respect to the moving axes is perpendicular to

the axis of the I].

=_' _ and d_,=_' In
I call _, _, _0' _ the initial values of _, _

r

the case of Hill's Moon of maximum lunation, we have _,----_=_0--o,

and I call _ the corresponding value of _.

At the end of a time T, equal to the quarter of a period, this Moon will be #i07

found in symmetrical conjunction, and we will have

Let us consider now another particular solution from our differential equa-

tions, and let

be the initial values of

in such a manner that at the origin of the times one is in symmetrical quadrature.

Let us consider the values of I]and of _' at the end of time T+T; and let

_' =/,(T + _, _'o,,,o).

The values fl and f2 are developable in terms of the powers of _, _ and _-

_, and vanish for
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= _o = o, _o --- _,o° .

If we have

f,=f_= o, (2)

one will be_ at the end of the time T+m_ in symmetrical conjunction, and the sol-

ution will be periodic of period 4T+4m.

_0We can extract from equations (2) • and as functions of E0' and m and _O
are developable in terms of the powers of E .

"O

There would only be an exception by virtue of article 30_ if the functional

determinant of f and f with respect to m and _0 vanished precisely fori 2

= ¢_= o, _,o= _,_.

It is extremely improbable that this will be true; some doubts may still sub-

sist_ however_ if Eill's mechanical quadratures do__not clearly prove the contrary.

_ere is_ in fact_ how Hill proceeded to determine 7_. He calculatedj for dif- /lO8
ferent values of T and of _, the functions

ft(T, o, _o), ./'2( T, o, _m),

and he then determined by interpolation the values of T and of _, for which these

two functions vanish. If the functional determinant of fl and of f2 vanished pre-

cisely for these values_ interpolation would have become impossible by ordinary pro-

cesses. We must therefore conclude that the class of satellites discovered by Hill
can be extended beyond the Moon of maximum lunation.

What therefore becomes the form of the orbit beyond this Moon? The values

of _ and of _ depend on time t and on parameter _$ , because the other initial

value _0 is given as a function of _$ by equations (2).

t

If _0 and t are sufficiently small_ _ and _ can be developed in terms of the

powers of these two variables. In addition_ by reasons of symmetry, _ will only

contain odd powers of t_ and _ will only contain even powers of t. We therefore
will have

,ii

_=_'oe+_t_+ --_J t_+...,

_n) being the initial value of the n-th derivative of E.

' and t are sufficiently small_ I may_ without substantial error_ reduceIf Co
IH

to its two first terms; in sddition_ _0 is developable in terms of the increasing
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" to the value which
' is very small, I may reduce _0powers of "_0; but, since _0

this quantity take for _0=0. Now, for _$=0, we have

we therefore have

Ixn t_.

=_',t 3(_), (3)

for the Moons considered by Hill and of which the lunation is less than that

of the Moon of maximum lunation, _ is negative, the two terms of the second mem-

ber of (3) are of the same sign, a_d _ cannot vanish for very small values of t,

if it is not for t=0.

On the contrary, for the new satellites in question and which we encounter

after the Moon of maximum lunation, _' is positive and _ vanishes for

t_
o, t=_V-F- _.

There are therefore three very small values of t for which _ vanishes, i.e.,

three quadratures having very closely related epochs.

The relative trajectory for C_C 0 therefore presents the form represented by

figure i.

_09

Figure i.

In the course of a period, mass B is found in quadrature six times, for its

relative trajectory intersects the axis of _ in two double points and in two sim-

ple points.

Thus Hill errs in assuming that this type of satellite will never be in quad-

rature; on the contrary, there will be three quadratures between two consecutive

syzygies.

It is not that there do not exist any periodic solutions for which mass B

can never be in quadrature: we will study them later_ in article 52; but these

solutions are not the analytical continuation of those which Hill so authorita-

tively studied in the American Journal.

The same results are still true when we do not neglect the Sun's parallax,
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except that the symmetry with respect to the axis of the _ disappears.

Application to the General Problem of Dynamics

42. Now, before instituting the study of second and third kinds of periodic

solutions, we are going to study the periodic solutions of the equations of Dy-

namics in a more general manner.

Let us return to the equations of article 13

d:rl dF _ty_ dF
a-7 = Yj_y_' -a-{= a_,

(z)

and the hypotheses of this article. The function F is developed in terms of the

powers of a very small parameter b, such that

F = Fo+ _Ft+ v.2Ft + ....

Here F is a periodic function of y_ F 0 is a function only of x.

to establish the ideas, that there are only 3 degrees of freedom.

integrate these equations when _=0 and when F=F O.

In fact, F 0 not depending on y, these equations reduce to

I will assume,

It is easy to

dxl dy_ dFo
dt = o, d---i-=-- _ = hi.

Values x. and consequently n. are therefore constants.
1 1

Thus, equations (i) admit the solution, when b=O,

•Z'l: all ,,Tt= air ,,,T3 = a,_

.yl = nl / + _'t_ yt--= n:/+mt, .J.'_ = tla / + m3r

and • being integration constants, and n being functions of _.

It is clear that if

niT, niT, n3T

JllO

are multiples of 2_, this solution is periodic of period T.

Let us now assume that b ceases to be zero, and let us imagine that in a

Certain solution the values of x and y for t=0 are, respectively,

y, = =, -+ [3_, .r, = _,, + _,, .r, = =, + _.

Let us assume that in this same solution the values of x and y for t=T are #Iii
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The condition for which this solution is periodic of period T is that we have

+,= +,: +3: +,: +_: +,: o (12)

The six equations (12) are not distinct. In fact, as F=const. is an integral

of equations (I) and in addition F is periodic with respect to y, we have

F(ai+ _i, _i _- _i+3) = F(ai+ _+ +i, 'm+ niT + _i-_3+ +i+3)

= F(ai+ _i÷ +i, '_i+ Oi+,+ +i+_).

It will suffice us therefore to satisfy five of equations (12). I will

assume_ in addition_

For this it suffices to choose the origin of the time in such a manner that

Yl is zero for t=O.

It is easy to see that the 9i and the 4i+3 are holomorphic functions of

and of _, vanishing when all these variables vanish.

It therefore is a question of demonstrating that one can determine from the

last five equations (12) the _i as functions of _.

Let us note that, when _ is zero, we have identically

Consequently, 41 , 42 and 43 , developed in terms of the powers of _ and of _, con-

tain _ as a factor. We will isolate this factor b, and consequently write the

five equations (12) which we have to solve in the form

+-'= +-'= +_=_5= _.= o. (13)

For b=O, we know the general solution of equations (i); we therefore easily /112

find

¢,_=---Ty_ Fo(a, + _,, a,+ [3,, a3+ _3),

+, =- T _ Vo(_, + _,, _,+ 13,,,,3+ [3,),

0 Vo(_,+ _,, a,+ I_,,a_+ [33).
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The functional determinant of 44 , 45 and 46 with respect to _i' _2 and _3 is

therefore equal, to within a factor -T_ to the Hessian of F 0 with respect to x.

I now propose to express 41 42 and 43
, -- functions of _4' _5 and _6' as=uming_=0 and at the same time _ _ b

Now we find

d(_) dFt dI"z dF_= _x, + _x, + _'_y, +... ,

from which

_i fT dF, fT dF2 _

_ =,., _),i dt + _jo _lyc: dr+... (i=1,2, 3),

or, for _=0,

Since we assume _=0 and at the same time

(2)

1_,= l_,= P, = o,

and if we remember thatw=_4=O , we must, in the second member of equation (3),

replace Xl, x2, x3, YI' Y2' Y3 by respectively

at, a2, az, n,t, nt/+n_+_s , nat+_3+_8_.

Then dFl-- becomes a periodic function of t.

dY i

We can write

Ft = XA s[n(nhy:+ mtyt+ m,2", + h),

mI, m2, m3 being positive integers, whereas A and h are functions of the inde-

pendents x of y.

We then have

Ft= _Asln_, dF, dF,
= ZAm:cos_ = _.,

where we have set_ for brevity_

m= t(mtn1+m, n2+m_n,)+h+m2(mi+@,)+m3(_3+_6);

_i13
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FI thus becomesa periodic function of t of period T; it is equally a periodic

function of period 2_ with respect to e2+_5 and to _3+_6.

I will designate by [FI ] the meanvalue of the periodic function FI, such
that

[Fl]=_ Fldt:SAsin_o,

the sign S signifying that summation must be extended over all termsj such that

We then have

@i = Td[F,] d (6'") =T d:[F,]
"_ _ ' d3_.+_ \ V-, d_, d_'

From this we conclude:

(i) that it is always possible to choose _2 and _3 in such a manner that
the equations

3_
= ---= o

F F

are satisfied for _5=_6=0.

In fact, function [ FI ], which is finite, is periodic in _2 and _3: it there-

fore admits a maximum and a minimum; we will have, for this maximum or this mini-

mum

d[v,] _ d[_',]
dt_ d_= = o,

and consequently,

t _ _3 ----- O,

F F

(2) that the functional determinant of --42 and __43 , with respect to _5 and
2 _

_6' is equal to T multiplied by the Hessian of [FI] with respect to _2 and e3"

From this it follows that we can choose the constants _2 and _3 so as to

satisfy equations (13). It remains, in order toestablish the existence of periodic
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solutions, to show that the functional determinant of these equations, i.e.,

(+',
_(I3., _.,,13.,,_,.,t3_) '

is not zero.

Now, for b=0, 94, 95 and 96 depend only on _i' _2' _3 and not on 85 and _6"

This functional determinant is therefore the product of two others

-_/ and a('+_,%s,@_'_

Now we have just calculated these two functional determinants, and we have

seen they are equal, to within a constant factor, one to the Hessian of [Fi] with

respect to Co2 and to _03, the other to the Hessian of F 0 with respect to the x.

Therefore; if neither of these two Hessians is zero, equations (i) will ad-

mit periodic solutions for small values of _.

We are now going to seek to determine no longer only the periodic solutions

of period T, but the solutions of a period differing but little from T. We have

taken for a point of departure the three numbers nl; n2, n3; we would have been

equally able to choose three other numbers, nl_ n_, n3, provided that they are

commensurable among themselves, and we would have arrived at a periodic solution

whose period T' would have been the smallest common multiple of 2_ 2= _.
n! _2 _3

If we take in particular

n', =-,,,(i + -0, ,,', = n,(,-g O, ,q = ._,(E+ _).

, ,the three numbers nl, n2, n will be commensurable among themselves, since they

are proportional to the numbers nl, n2 and n 3.

They will therefore lead us to a periodic solution of period

-r +_- T
14-e

such that we will have

xi= _"(t' 1_'t)' Yi= _;(t' F' ¢)' (14)

the £0i and the £0_ being functions developable in terms of the powers of # and of

/115
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¢_ and periodic in t_ but in such a manner that the period depends on

If in F we replace xi and Yi by their values (14)_ F must becomea constant

independent of time (since F=const. is one of the integrals of equations (I)).
But this constant_ which is called the vis viva constant_ will depend on b and
¢ and can be developed in terms of increasing powers of these variables.

If the via viva constant B is a given quantity of the problem_ equation

can perhaps be regarded as a relation which unites ¢ to _. If therefore we have
chosenB arbitrarily_ there will still exist a periodic solution, no matter what
the value chosen for this constant; but the period will dependon ¢ and consequent-
ly on b.

A more particular case than the one which we have just dealt with in detail is
that where there are only 2 degrees of freedom. ThenF depends only on four var-
iables, Xl, YI' x2_ Y2, and function IFI] depends only on a single variable _2'

Relations (6) then reduce to
a[F,] (15)

d_ 2 _ O,

d[F,]
and the Hessian of [FI] reduces to _ ; from this we conclude:

To each of the simple roots of equation (15) there corresponds a periodic

solution of equations (i), which exists for all sufficiently small values of b.

I might even add that the case is still the same for each of the roots of

odd order.

/116

The existence of periodic solutions once demonstrated_ it remains to show

that these solutions can be developed in terms of the powers of b and can be

written

xi=O<o(t)+vtOi.t(t)+F'-Oi.2(t)+... (i=l,a .... ,n),

_i,0(t), O/,4(t), ..., being periodic functions of t which are developable in terms of
the sine and cosine of the multiples of

According to the theorem from article 28, we will have

=_= _I_[t -- q, _, x? -- _,(o), =_ -- _.,(o), ..., _0 _ _.(o)],

if x°,,x_,...,x, are the initial values of x,,x2,...,x, for t=O.
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The value Hi is developable in terms of the powers of

0
t--t,, _ et x,--_,(o),

if _ is sufficiently small and if t is sufficiently close to tI and x? to _i(0).

We will take

t=¢t+-_-

In addition, we will take

D
_,- ?_(o)=p_.

We will choose the _i and T so as to obtain a periodic solution, i.e., to

satisfy equations (9). We have just seen that, if T and _i satisfy these equations

(9), we will be able to develop r, _I, _2_ "'', _n in terms of increasing powers

of _, and that T and the _i will vanish with _.

We will therefore have

. /tl_ )_="'kT' _' _'' _' .... ' _ = U,(_),

K i being a function developed in terms of the powers of b.

Ki does not depend only on p, it depends also on tl; we will therefore write /117

xi= K_(t.._).

remembering_ nevertheless, that K i may be developed in terms of the powers of _
but not of those of tI.

This grantedj when we increase tI to T_ we increase t to T+_, and since we have

arranged to obtain a periodic solution of period T+T, x i may not change; we have
the re fore

Ki(t,+ T, _) = K,(t,,_). (I0)

Since K i is developable in terms of the powers of _, we can write

Ki(tl,_) = 0_',0+ O_,t_ + Oi,t_ l + ...,

Oi,o, 8,,, , O;,.., ...,. depending only on t 1. Identity (10) then shows that 0i_ k does not

change when we change tI into tl+T. Therefore Oi_ k is a periodic function and can

be developed in terms of the sine and cosine of the multiples of
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T = T+'_"

Q.E.D.

Case Where the Hessian Is Zero

43. There can be difficulty when the Hessian of F0 is zero.

This is how it is permissible, in a rather large number of cases, to over-

come the difficulty.

Let us assume that the Hessian of F 0 with respect to the variables x is

zero, but that we may find a function of F0, which we will call _(F0) and whose
Hessian is not zero.

We are going to transform equations (I) in the following manner.

These equations admit the vis viva integral which is written

F=C.

If _' is the derivative of the function _, we will have for F=C

?'(F)= ?'(C),

and _'(C) will be a constant which may be regarded as known, if we assume that

the initial conditions of motion are given and permitting, consequently_ the cal-
culation of the constant C.

Equations (I) can then be written

d_-,. d[?(F)]
dt -- v'(C)d.r,' -_r= _ (C)d_7"

They retain the same form, but function F 0 is replaced by _(Fo) whose Hessian
is not zero.

For example, let us take the particular case of the Problem of Three Bodies

studied in article 6, the one where one of the masses is zero and where the other

two move circularly.

In this case, we have found

we therefore have

!
Fo_----- +x2;

d*Fo dIFo

dx[ = d_dxz = o.

ill8

95



Our Hessian is therefore identically zero; however, if we take

| 5,-I

?(Fo) = F_,_ _x; xl '

the Hessian of _F) is equal to 6

x_
and is different from O.

Thus, all the preceding is applicable to this psrticu!ar case of the Prob-

lem of Three Bodies which possesses periodic solutions for small values of b.

Let usj on the contrary, consider the general case of the Problem of Three

Bodies treated in article Ii.

We have found that this problem could be reduced to the canonical form, the

two series of variables being

_L, _G, _0, _'L', _'G', _'0',

l, g, O, l', g', 0'.

The function F can be developed in terms of the powers of b

F : Fo + FI i-t+ F2iz: + ,,. ,

and we have

If_ to take up again the notations used in this chapter, we designate the

two series of conjugate variables by

yl, y2, Y_, )'_, Y_, Y',

such that

xl=_I,, x4=_'L,

]I19

we will have

_3 _'_

the Hessian of F 0 will be manifestly zero.

If we consider any function _(F0) , this function will still depend only on

xI and x 4 and its Hessian will still be zero. The artifice that we used above is

therefore no longer applicable, and the arguments of the present article no longer

suffice to establish the existence of periodic solutions.

This is the origin of the difficulties which we will attempt to overcome in

articles 46 to 48.
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These difficulties are still the result_ as we have just seen_ of the fact
that F0 depends only on xI and x4, i.e., because we have

d'Fo dT_ c'F_ _G
dx--_= _-_ = _7 = -_- = o ,

or even_ if _=0_

ay, a.r, dy, dy,
d---/---'_ ="Y/- = -dF =o •

These equations signify only that in Keplerian motion, the perihelions and

nodes are fixed.

Now_ with any other law of attraction than that of Newton the perihelions

and nodes will no longer be fixed.

Therefore_ with a different law from the Newtonian, we would no longer en-

counter_ in seeking periodic solutions of the Problem of Three Bodies_ the dif-

ficulty which I have just indicated and to which articles 46 to 48 will be devoted.

Direct Calculation of Series

44. We have just demonstrated that equations (i) from article 43 admit

periodic solutions_ and that these solutions can be developed in terms of the

powers of _.

Let us now attempt to effectively form these developments_ whose existence

and convergence we have thus demonstrated in advance.

I begin by observing that we can introduce an important modification into

the calculation of these developments. Above we introduced three numbers:

/_120

such that

niT, n_T, n3T

are multiples of 2_ and consequently commensurable among themselves. These

three numbers characterize the periodic solution considered.

I say that we can always, when studying a particular periodic solution_

assume that

Let us assume_ in fact, that this is not true.

set+ing
y, = _,y't + _,Y', + _Y'*, ="t= _l:r, + [3,=:, + _,:_,

1 t

y_ =_ -_,y; + y,y', + -f,y'_, z_ = =_z, + p_z, + -f,=r,.

We will change variables by
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The

fore.

equations (with the new variables x' and y') will retain the canonical

If, in addition_ _, _ and y are integers and their determinant is equal to

i, function Fj periodic with respect to y, will also be periodic with respect to

y'

v n I
If we call nl, 2; n_ the transformed values of the three characteristic num-

bers nl, n2, n 3 after the change of variables, these three numbers will be given _121

us by the equations

since nl, n2, n3 are commensurable

integers _, B and y such that

among themselves_

F t
,Irl.I _-_" Aa _ O.

we can obviously choose the

It is therefore permissible to assume

which is what we will do hereafter.

We are therefore going to seek to satisfy equations (i) by making

k k

x i and Yi being periodic

stants such that

z, =x °,+ _x'+ _'x; +...,

y_ = y_ + I_y_ + l_'y_ + ....

y, =y_ + l_y; + l_'y| +...,

y, = y_ + Fry' + _'y| + ....

functions of time of period T. The

_ridF,(x_,_;, xl)= - n,-, 7_ 1 _ I"f 3 -_- 0 )

0
value s x

i
are

(2)

con-

and, on the other hand, we have

.y_ --- nit "t- _ll

from which

r| =,_,, 2"I =_,,,
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_i, _2 and _3 being constants that we reserve for later, more complete determin-

ation.

The origin of time remaining arbitrary, we will be able to choose it such

that Yl=0, whatever b may be for t=0. From this it follows that y_, y_, y_,

... will be zero at the same time for t=0 and ml=0.

In F, instead of x and y, we substitute their values (2) then we develop

F in terms of the increasing powers of b, as was stated in article 22. It

follows that

J122

and we will have

+o = Fo(=O,, =_, x_o).

dFo
It will then follow (if we remember that _ -'--ni and that n2=_=O)that

____ 0 0 0 0 0 0 n I .Z"_ •'l'I Fl(:r l, x2, x3,Yl,Y,,Y3) --

More generally, we will have

Ck = Ok- ntx_" = Oh--4-x_ dFo dFo dFo_7 + =I d:-']+ _t Z_F

(3)

and ®k will only depend

• x_, and on x_-',on z_, on ,..

.. yp'on Y_' on Y_' " and on "

0
With respect to the Yi' it is periodic of period 2n.

This granted, the differential equations can be written, by equating the

terms of the same powers in _,

We then find

dx,o dxO, ,_ a.r,o dy,o a r,o
-_i = -_- = _ = o, -d7 = n,, '_7- = n,, -dF = n_.

dx} dF, dx' dF, dx', dFl
d--7-= _z'_' --_ - ez_' --a- =

(4)

and

dz_ d+,
a--/-= - _"

dr; d+, dyt d+, (5)

99



and more generally

a+, (4')
at dry

and

dy_ dq'k _ dO_. d: Fo d' Fo d ' Fo
at - ax, o ax_ xf dz? dx_ x_' d_l d_-y z_ _tx_ dzy " ( 5 ')

Let us first integrate equations (4).
their values

O 0 O

In F I we will replace YI' Y2' Y3 by

nl gJ _I, _'$-

Then the second members of equations (4) are periodic functions of t of per-

iod T; these second members can therefore be developed in series in terms of the

sine and cosines of the multiple of--
2wt

T

i i i

In order for the values of Xl, x2, x3

taken from equations (4), to be periodic functions of t, it is necessary and suf-

ficient that these series are not composed solely of given terms.

I may in fact write

P,----EA sin(m,y_ + m2y ° + m=y ° + h ),

where ml_ m2_ m3 are positive or negative integers and where A and h are functions

O O O

of Xl, x2, x3. I writ% for brevity,

F, = XA sin _o,

setting

to = m,y_ + rn2y ] + mjy] + h.

I will then find

dF,
dy--_t-- XAmtcosto,

dE{

_y----_ _--- _-,A/?z2 CO5_j

dF,

and

-----tin{ n t + h + mt _m+ rn__a.

Among the terms of these series_ ! will distinguish those for which

ml=O

and which are independent of t.
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FI being a periodic function of t, I will call _i ] the meanvalue of this

function and I will have

[Fs] : SA sinto, (mi : o, to : h + rnlt_t -+- m3wj),

the summation represented by the sign S extending to all terms of F I for which
the coefficient of t is zero. We will then have

d[F,]d[Ft] _ SAmicos% ---- = SA m_cos_o.
d_t d_3

If, therefore, we have

d[F,] d[F,]
- -7_ =°" (6)

it follows, since moreover m I is zero, that

SA mtcos_ = o, SA mz cos_o ----o, SA.rn_cos w =o. (7)

If, therefore, relations (6) are satisfied, the series _ Am. cos_ will not be com-

posed solely of given terms, and equations (4) will give us i

xt '_ Ai sin to
,=/_._ _ +el, x_t Z Amtsin_= -- + C,:

DZI _l

xl =Z A m, sinoJ-- + el,
nl L 121

i i and i
CI, C 2 C3 being three new integration constants.

It remains for me to demonstrate that we can choose the constants w2and b so

as to satisfy relations (6). The function [FI] is a periodic function of B2 and

, which does not change when one of these two variables increases by 2w. In

addition, it is finite; it will therefore have at least one maximum and one mini-

mum. There are therefore at least two means of choosing _2 and _ so as to sat-
isfy relations (6).

I could even add that there are at least four, still without being able to

state when the number of degrees of freedom is greater than 3-

I shall now attempt to determine, with the help of equations (5), the three
i and the three constants C_ .

functions Yi x

0 0 i
We can consider x.l and Yi known; x.1 are also known to be constants near CI.

I can therefore write equations (5) in the following form
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dr_d.7=Hi--C[ d_'Fooo C] d:Fo C] d'F.
a_,a_, a=_a.d _' (8)

where H. represents entirely known functions developed in series in terms of the
1

1 1 1
sines and cosines of multiples of 2_____T" The coefficients of CI, C2_ C3 are con-

stants which we may regard as known.

i
In order for the value of Yi obtained from this equation to be a periodic

function of t, it is necessary and sufficient that in the second member the com-

pletely known term is zero. If, therefore, H.0 designates the completely known
1

term of the trigonometric series H., I must have
i

d'F° o +C[ d_Fo +C] d_Fo o
C[ dx] dx_ dx]d:r_ _'= II,. (9)

1 1 1
The three linear equations (9) determine the three constants CI, C 2 and C3.

There would only be an exception if the determinant of these three equations

were zero, i.e., if the Hessian of F 0 with respect to xO, x0 and x_ were zero;
we will exclude this case.

Equations (8) will therefore give me

yl = -d? dt + _'

or

.rl=n[+zl, y'=.,l+/,:, _,'l=_,l+zl,

ii
.,1]i being completely known periodic functions of t and k_l being _hree new constants

of integration. It follows from the equations which I have just written,

that _ =_i=__ for t=O. moreover,

Let us now come to equations (4') by here setting k=2 and i=1,2,3 and let us

attempt to determine, with the aid of the three equations thus obtained, the three

2 i
functions x. and the three constants k_.

1 1

It is easy to see that we have

Oz = o2 +Yl dFl dFI dF,

102



0 0 i
o depends only on the xi, Yi and xi and where we have, as above,

dFt
-- -_ ZAmicosm.
ay_

Equations (4') are then written

dx_ do, _ anF,

_/126

or

dx_
dt = Hi -- k[ XAmlmi sinto --k t,XAmtra;sinto--k| XAm3 m_ sinto, (io)

HI being a periodic function of t, which we may regard as entirely known. In
m

order for us to be able to extract from this equation x2 in the form of a periodic
1

function, it is necessary and sufficient that the second members of equations (I0),

developed in trigonometric series, possess no completely given terms. We must

therefore choose the quantities k.I so as to eliminate these completely given terms.
1

kl
We would thus be led to three linear equations among the three quantities x; how-

ever, since the determinant of these three equations is zero, there is a slight

difficulty and I am forced to go into some details.

i

Since we assumed above that Yl=O for t=0, we will have

kI=o;

i i

we will have only two unknowns, k2 and k3, and three equations to satisfy; but these

three equations are not distinct, as we shall see.

Let us in fact call E. the completely known term of H Ia. 1 ; these three equations

are written (if we remember that the summation sign S refers to terms such that

mi=O)

Et = o,

Et -----kt' SAm_ sino, -4-kl SAint rnt sin _ ,
(li)

E,= S + k. S

the latter two of equations (ii) might also be written

--,E,= A-I d[F,] drIFt]
dml + kl d_

d_[F,] +kt dt[Ft]
-- Ea = kl d_, d_ --k-_-wl"
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i i unless the Hessian oi" [FI] ,From these two equations we obtain k2 and k3,

to _2 and U_, is zero. If we give k.l the values thus obtained, thewith respect D I

two latter equations (i0) will give us x2 and x_ in the following form

' ' = +C_,

2 2

Fi being the completely known, periodic functions of t and the C_l being the inte-

gration constants.

2
In order to find Xl, we can, instead of using the first of equations (i0),

make use of the following considerations:

J127

Equations (i) admit an integral

F=B:

B being an integration constant which I will assume developed in terms of the

powers of b when writing

B ---- Boll-/_BI-_- _2B_-i-...,

such that we have

'I_o= Bo, _,= Bh '_1 = B,, ...,

B0, BI, B2, ... being so many different constants.

The first member of the equation

0 0 I i 2depends on xi, Yi' xi' Yi; x2 and w' which are continuous functions of t, and on

2
x I which we have not yet calculated. From this equation we will therefore be

2 .
able to obtain x_ mn the following form

±

zl= (if+ c! ;

2 2 is a constant
{i will be a periodic function of completely determined t and C I

2 and C32.which depends on B2, C 2

We can conclude from this that the first of equations (ii) are not distinct,

Let us now take equations (5') and here make k=2; we will obtain three equa-

tions which will permit us to determine the constants C_, C_± and C}± and from

which we will furthermore obtain y$ in the form /128
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y being entirely known periodic functions of t and k being three new integration
constants.

2
Let us then return to equations (4'), making k=3; if we assume kl=O , we will

be able to obtain from the three equations thus obtained first the two constants

2 and 2 then 2 in the form
k2 k3 ' l

_ = _. + c_,

being known, periodic functions of t and C3. being three new integration constants.

And so forth.

There is a process to find the power series of _ periodic of period T with

respect to time and satisfying equations (i). This process would fail only if

the Hessian of F 0 with respect to the xgl was zero or if the Hessian of [FI] with

respect to Uc2 and _ was zero.

Direct Demonstration of Convergence

45. It might be useful to be familiar with a direct demonstration of conver-

gence of the series which we have just formed and whose existence and convergence

we had previously demonstrated in article 28. I will first give this demonstration

in a particular case.

Let

d,y (i)
+ _f(x,.r)

be a differential equation; we have seen in article 2 that this equation (con-

sidered by Gyld_n and then by Lindstedt in their researches on Celestial Mechanics)

can be regarded as a particular case of the equations of Dynamics with only 2

degrees of freedom.

I will assume that f(x,y) can be developed in terms of the increasing powers

of y, and that we have

f = y,+ f_y +.f,y'+...,

f0' fl' f2' ... being functions of x which I will assume to be periodic and of

period 2w. I will assume in addition that the mean value of fo is zero:

/129

[/o] =o.
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This granted, I am going to attempt to develop y in terms of the powers of _,

such that

y =),I_ +),,_i+...+y, it"+ ....

By substituting this value of y in _ it follows that

? = ?o+ _?t +...+ _"?,_+...,

and the differential equations will become

d_yo dl yj d'yl d_y.
dr' =°' _ = _o, _ = Tt.... , _ = T.-t .....

We want YI' Y2' ... to be periodic functions of x. This will be possible pro-

vided the mean values of the second members are zero, i.e., that we have

[_,o]= o, [_,]=o ..... [_,.]= o.

The condition is satisfied by the first member, because we have

_, =.to, I'_01= [/01 = o.

On the other hand, it follows that

?,, = O. +flY.,

On depending only on YI' Y2' "'" Yn-l"

Let [yn ] be the mean value of Yn' and let us set

.r.= _n+ [.r.],

such that _n is a periodic function of x, whose mean value is zero.

This granted, let us imagine that we have determined by previous calcula-

tion

[y,], [y,] .... , [y._,],| (2)

and consequently also YI' Y2' "" "'Yn-l' and that we propose to calculate 1]n+l

and [Yn _

The relation [_0n_O can be written

[0.1+ [A,M + [.t',][.r,] = o.

In this equation [en ] _nd[ fl_] can be regarded as known, because the quantities

(2) are known; [fl ] is a given constant; we can therefore obtain [yn ] from it.
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Wethen have

d'y,,+, d%n+,
-_q --_ =_.

If I set

_n _ Am cosm_ _-_ Bmslnmx,

it will follow that

-- -- cosmx-- _¢inmx.
r_n+l = nz z .-_

Values

There results from this that if

have, taking on the notation from article 20 completed in article 35,

Tn<@, (srg e±tz) ;

_] and y can therefore be calculated in this way by recurrence.

is a periodic function of x, such that we

we will have afortiori

_n+t< _, (arge±tz) •

We will write in the following

e ----f--fo --fry -=fzY, +frY, + ....

such that

F(ey,& F'y,+ Ftya+...)= 0,_'+ 6sF'+...+ B,F.+ ....

let f' be a function of x and of y in the same form as f',

.t"= fo +.t';y +f;y: + ....

This granted,
such that

I!

fo' fl' f2'

that we have

i.e.,+

... being periodic functions of x, and let us assume additionally

f <f'(argy, e*tz).

If we then set

f'(Fy,+ F'y,+ _'ya+...) = ?_+ F¢, +...+ F"?',,+...,

it will follow that
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?" "_T',, (argyx, Y* .... , yn, e±tz).

We will similarly set

e' = f'- f'o - f',.r,

i r -t.O'(_Y_+_'y2+_y34...)=O_'+O'3_3 ÷.. +0._ ......

from which

We will finally write

O_ < 0',,.

Now let y', _'

y'= _'+z

and developed in terms of the powers of _, such that

Y'= m,*",+ _'..,d+ ....
•g= _', + _'_,_ + ....

z _ _tz I + bLz2:z + ....

Let us define these functions by the following equations

we will first find

and since we have, on the other hand,

we will conclude from this

We then find

and z be three unknown functions connected by the relation

",z',= 'i"o,

_l < _'1 (arge*_z) •

.st = Xf't _'t

(3)
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and, on the other hand,

from which

It then follows that

and, on the other hand,

from which

s

T,(x,y,)

d_t
= ?i(_,0",)

then

and, on the other hand,

from which

and so forth; the law

and

converges,

m<#,;

--r i

[y,] = _] [A,,,]- {-A],][e,I,

being manifest, we will have

.7",,<.7",, (arge*i-)

y</ (argM, e±tz).

If, therefore, the series

g = _y;+ _'g,+ _'y_+...

the series

Y ----MY + I_'Y2 + ... (4)
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converges afortiori. It remains, therefore, for me to establish that the series

y' converges, or, what is the same, that equations (3) can be solved with respect

to 7i' and to z.

Now the functional determinant relative to these equations (3) can be written

d(_/-- _,f', z - ),/', _'-- ),_')
d(_', z)

and its value for _'=z=_=O is equal to i. It is therefore not zero, and conse-

quently according to the theorem from article 30 equations (3) can be solved.

Therefore series (4) converges. Q.E.D.

The equations treated in this article represent a particular case of those

which were the subject of the preceding article. A direct demonstration completely

analogous could be given in the general case. We wikl return to it later.

Examination of an Important Exceptional Case

46. According to what we have just seen, the principles of article 42 are

found to be faulty when the Hessian of F0 with respect to x is zero.

Let us therefore examine the case where the Hessian is zero, and more par-

ticularly the case where F 0 is independent of any of the variables x.

I will assume, to fix the ideas, that there are four degrees of freedom, that

two of the variables xI and x2 enter into FO, that the two others x3 and x4 do

not enter, and finally that the Hessian of F0 with respect to xi and to x2 is not

dFo dYo _---O)
zero (the Hessian with respect to Xl, x2, x3 and x4 is zero, since d_---_-----_-_x_"

For _=0, the general solution of the differential equations is written

_'1 _ "_"_*

o dFo dFo
"'=-d*--_' _|---_--x-_' "I= "_=o,

(1)

0

and _i being constants.X i

If x0 and x0 have been chosen such that nOlT and n2% are multiples of 2_, the

solution will be periodic of period T, and this will be true no matter what the

o 0 _2' andinitial values _'3' x4' "_ ' m3 %"1

Let us consider any arbitrary solution for any arbitrary value of b and

let
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._=.t+p,, .,.-,= ,,,,+ p_ (2)

be the initialvalues of x. and of Yi for t=O. Leti

be the values of x. and yi, for t=T.i

In order for the solution to be periodic, it is necessary and sufficient

that we have

',',',= "1',-- 'I', = 'I',,= o, t
t

(3)

I will note:

(I) that I may always choose the origin of time such that the initial value

of Yl is zero, as well for the periodic solution (i) as for the solution which

corresponds to the initial values (2). We will therefore have

_i _ _i --O1

dF

(2) that F=C is an integral of our differential equations and that d-Xl is

dF 0

not zero (-_i is equal to nl). Equations (3) are therefore not distinct, and I

may suppress the first from among them,

_,= o;

(3) that for _=0, one has identically

'I,,= 'I,.= '.I,,= '"' - '"' -v_ -- Yi -- o ;

! !

that consequently _ 2' _ 4'41 , * 2' '3' _ ¼ are divisible by _.

place system (3) by the following

I may therefore re-

+_,= 'h = +, = ¢,;= 4,;= "'-"-= ,1,_',= o. (4)

I propose:

(i) to determine

_, x[, w2, w_ andW_

0 0
(x I and x2 are already assumed determined and ml is assumed zero), such that
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equations (4) are satisfied for

= o, _t= o, _ = o,

(2) to inquire into whether the functional determinant of the first members

of system (4) is zero, or, in other words, if for _=0 the solution

_,= o, _ = o

is a simple solution of this system, or at least a solution of odd order.

To do so, it is necessary for us to determinewhat equations (4) become for
_=0.

We have

_0_ _T dFdr, = dx, : ?tf, <lt

or, since ._-_-Q=O,

aY2 "

or, for _=0,

_.. f T d /F--Fc',_
t-7-J

T

_'_--t"t -- ( _d]:'tdtj

for _=0, we have

=t==?+[si, a.'t= ,,,t + _t + It,,

nit _ w
dVo(X_o-4- I_,, _l'+- °

d(_'+ _i) , ni = n, = o.

Let us substitute these values of the x. and of the y. into the second member of
equation (5). l l

O
If we make, in addition, 81=B2=0 , nI and n2 reduce to n7 and n2, and the func-/136

tion F I becomes a periodic function of t of period T; it is besides, a function _'z,

_' which is periodic and of period 2w; finally it still dependsof w2 + _3 + _',,_, + i_,

0 o _ We can writeon x x_q- _and m,-_w_.

Fi = $:A cos(rely I + miyl + miy3 + miyl .-r k ),

ml, m2, m3 and m4 being integers, A and k being functions of x.. In fact, theI
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function FI is by hypotheses periodic of period 2wwith respect to Yi"

After substitution, it follows that

FI = Y_Acos(_t + [3)

where

a = m, n o+ m, n 0, _ = k + mi (w, + _'2)'+ rnt (_ -4-_ ) + m, (w_.-+ [3_.).

Among the terms of the development of FI, I distinguish those for which _ is

zero, and I call R the combination of these terms, such that

R = _:A cos_,

the summation being extended to all terms for which we have

m,n_+ m,n °,=o.

The function FI is a periodic function of time of period T, and R is nothing

other than the mean value of this function, such that we have

TR= f'F, at,

or, by differentiation with respect to _2'

dR ._,'r dF_

but we have

dF, dF, dy2 dFt

Equation (5) therefore becomes

we would similarly find

_?t dR ,_ dR
-_ = _-_w T, -_ = _-_-_T.

We find, by a completely similar calculation,
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or, for b=O,

+_ _ #_ __y, dR
Ix Jo dx_. dt ----- T _lx--_3

and similarly

+-_= - T /_R.
dT_

On the other hand, it follows that

•T dF
n_T-e+'t:--11o _dt

or, for b=O,

dFo
,qT+G= d(x_+[h)T' G = (",- 'q )'r.

Similarly we find

We first want, for

_i:(ni--n_)T.

_,=o, [3,= o, t_;=,, ,

0
that system (4) be satisfied. Now, if we have _I=B2:0, nI and n2 reduce to n2,

' and 9_ reduce to O, such that two of equations (4) are themselves satisfied.¢i

System (4) reduces simply to

dR dR dR' dR dR
_-_ = _-_. = _,_, = _G_,: _; =o. (6)

!

Thus, in the function R, let us cancel Bi and 8i; let us then consider R as a

0 0
function of x3, x4, _, m_, m_ ; if this function admits a maximum or a minimum and one

0
gives to the variables x. and _. the values which correspond to this maximum or to

i i

this minimum, we will satisfy equations (6).
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Does this solution of system (6) lead us to periodic solutions which exist
_till for small values of _?

For this it suffices that the functional determinant of equations (4) not
vanish for

Now 41 and _2 depend (when we make _=0) only on 81 and 82, for F0 and its two div-
O O

isors -nI and -n2 are functions only of Xl+81 and x2+_2.

This functional determinant is therefore the product of two others:

(i) of that of _ and _ with respect to 81 and 82 (but this is nothing other
than the Hessian of F0 with respect to xI and x2, which we assumedifferent from
O).

(2) of that of

-, - -, -' - (7)

with respect to

Now quantities (7) are functions of

The derivative of any one of the quantities (7) with respect to 8i or to

0
!

8i is equal to its derivative with respect to x.1 or to _..i

The determinant sought is thus the functional determinant of quantities (7)

with respect to

(8)

However we must calculate the values of this determinant for

= _t= _ = o.

T

But, when D 8i and 8i cancel, quantities (7) reduce to the first members of equa-
tions (6).

Our determinant is therefore nothing other than the Hessian of R with re-

spect to the variables (8).

If the Hessian is not zero, our differential equations will still admit per-

iodic solutions for small values of _.
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This result can still be stated in another manner.

There will exist periodic solutions for small values of _ provided that
equations (6) admit a simple solution. But there is more: there will still exist

periodic solutions provided that equations (6) admit a solution of odd order.

However, according to article 34, to a maximum of the function R there will

always correspond a solution of odd order of equations (6).

Therefore, if function R admits a maximum or a minimum our differential equa-

tions will admit periodic solutions for small values of _.

Solution of the Second Kind

47. Let us apply the preceding to the Problem of Three Bodies, assuming

first that these three bodies move in the same plane, and let us attempt to de-
termine the periodic solutions of the second kind.

Let us adopt the variables of article 15, i.e., the variables

_L ----A, [3'L'= A', tl.

l', 1_.

A solution will be periodic if at the beginning of a period, A, A' and H

have resumed their primitive values, and if t, t' and h have increased by a mul-
tiple of 2w.

The function F is equal to

F,_-q- FtFl .-+- _'-F: +...,

and F 0 depends only on A and on A'.

If therefore we assume _=0 and call

the initial values of our six variables, four of these six variables, _ A', H
and h will be constants and we will have

If in addition we set

A ----Ao, A' ----A_. II ----Iio, h ----It,,.

'_' o /1' _ '_[_'o

_14o

we will have

l = nt + l_, l" = n' t + l' o.
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Therefore, for _=0, if A0 and A; have been chosen such that nT and n'T are

multiples of 2w, the solution will be periodic of period 2w, whatever the constants

H0, tO, t'o, h 0 may be.

Here is the question which we present:

Is it possible to choose the constants HO, tO, t'0 and h 0 such that, for

small values of _, the equations of motion admit a periodic solution of period T"

and which is such that the initial values of the six variables are, respectively,

s. + fl,, :l; + 13,, H. + %

lo+fl,, r;+ls_, h.+fl,,

_i being functions of _ which vanish with _?

In order to resolve this question, it suffices to apply the principles of the

preceding article.

Value FI being periodic in t, t' and h, we are able to write

Ft= ZAeos(mtl_ m2l'+m2h+k),

A and k being functions of A, A' and H.

Let us replace in F I the six variables

A, A') H,

l, /', h

by

A,, ,'/_, Ho,

l_ + nt. lo -+-n' t , ho "_

it will follow that

F, = lgA cos(at + [3),

where

_=mln+m,n', _=_+m, lo+mil_+m3ho.

F I is a periodic function of t; let R be the mean value of this fu_nction, such

that
R = ZA co_,

the summation being extended to all terms, such that
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• =o, or m,n+mln'=o.

According to the principles of the preceding article, we will find the sought

values of H0, tO, t_ and h0 by solving the system

dR dR dR dR
d.-7= _ = _g = _ = o.

/141

We can always assume that the origin of time has been chosen such that t0=O.

On the other hand, according to the definition of the function R, we have

dR n, dR
n _7_o+ _o =°"

We can, therefore, replace the preceding system by the simpler system

dR dR dR (1)
dHo =_.=aT,,. ='"

It can occur that not all solutions of system (i) are suitable; but there are

solutions which will certainly be satisfactory: they are those whose order of mult-

iplicity is odd, and particularly those which correspond to a true maximum or mini-

mum of R.

In order to establish the existence of these solutions of the second kind, it
is sufficient for me to show that the function R has a maximum.

Now, this function R is essentially finite; in addition, it is periodic in

_$ and ho: it still depends on H0; I will add that it can be developed in terms of

the powers of

I/Z_--H_ and (A_--(Ho-- C),, (2)

C being the areal constant.

The function R will therefore be real only if we have

H_<^_, (no-C),<X_,, (3)

and H 0 must always lie between these two limits. Z may always choose a variable /142

such that H 0 and the two radicals (2) are doubly periodic functions of

Thus R is a uniform function, periodic and finite, of only three variables
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t f

(since AO, A0 and C are considered as given, and t=O), namely of tO , h0

q_.

and

This function therefore admits at least one maximum and one minimum, such

that there are always at least two periodic solutions of the second kind.

We know that the development of the perturbing function F I contains only

cosines, so that the quantity which we have just called k is always zero.

If therefore we make

1o= l'o = ho=o,

we will have

dR dR
d4 = _ = o;

it will remain to satisfy the equation

dR

dtto

where, what comes back to the same thing,

dR

dy

This will always be possible, for R is a periodic function of %0which must
have at least one maximum and one minimum.

There therefore exist always at least two solutions of the second kind, for

which

la = /'u = ho = o.

If b=O, the initial values of t , _' and h are therefore zero, which amounts

to saying that there is symmetrical conjunction.

By a completely similar reasoning to that of article 40 (P.77), we might con-

clude that there is again symmetrical conjunction for small values of _ and that

if at the beginning of the period we have symmetrical conjunction, it is the same

in the middle of the period.

Among the periodic solutions of the second kind, there are always some which

admit symmetrical conjunctions (or oppositions) at the beginning and at the middle

of each period. _143

One difficulty might, nevertheless, present itself, and I am obliged to say

a few words concerning it.

Function R depends on t, ho, HO, since we will consider A0 and _ as given
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quantities and we choose to to be zero.

The function R is periodic in t6 and in ho; in addition, the third variable

H0 is subject to certain inequalities, for example, to the following

Ao > tlo.

From this we have concluded that function R always admits a maximum and a
minimum.

But we can wonder what would happen if this maximum were precisely attained

when H 0 reaches one of the limits assigned to it by inequalities (3).

Would the conclusions from article 46 still be applicable?

We might doubt this, for, if R reaches its maximum for Ho=Ao, for example,

dR

the derivative_ is not zero, it is on the contrary infinite.
%J

It is true that for the Problem of Three Bodies we could without difficulty

verify that the maximum of R does not take place for this value of HO; however,

as this case might present itself with other disturbing forces than those which

we consider in the Problem of Three Bodies, it is not without interest to examine

it more closely.

Let us assume, for example, that we consider the values of H 0 very close to

AO; we will be able to adopt the variables of article 17, i.e., the variables

A, A', _',

),', l', v,*.

Let us then call

Ao+ _,, a_, + 13,, t; + _,,

x_+ih, "_+[h, ,,;+_,

the initial values of these six variables and let us attempt to find if we can

choose these initial values such that the solution is periodic, the 8i will be
functions of _ which will have to vanish with _.

To do so, we have seen, it suffices to choose

_, _ et _,

such that R is a maximum or minimum; we know, on the other hand, that A0 and

' is zero.
must be regarded as given values and that we can always assume that tO

If R reaches its maximum for Ao=H 0 with the new variables, this maximum will be
attained for
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_ = _ =o.

However, this time there is no more difficulty, because R is a holomorphic func-

tion of _ and of _ developable in terms of the powers of these variables, while

the difficulty arose from the former variables for which R ceases to be a holo-

morphic function of H 0 for Ao=H O being developable, not in terms of the integral

powers of Ao=Ho, but in powers of _-_O"

The results of the present article would therefore subsist even though the

function R would attain its maximum for Ao=H O, or more generally when H O attains

one of the limits which are assigned to it by the inequalities (3).

Solution of the Third Kind

48. Let us now attempt to determine the periodic solutions of the third kind,

i.e., those for which the inclinations are not zero.

Let us adopt the variables from article 16, i.e.,

pL=A, _'L'= A', pr=H, p'r'= H',

l, r, g, g.

Let us first assume that _=0 and let

Ao, A_, Ho, H'o)

1o, to, go, g_

be the initial values of these eight variables. If A0 and A_
are chosen such

that
dFo dFo

nT =- --T _/_, n'T = -- T dA,°
Z145

are multiples of 2w, the solution will be periodic whatever the six constants

may be

Ho, ItS, lo, l_, _-o, g_.

Can we choose these six constants such that, for small values of _ the

equations of the Problem of Three Bodies admit a periodic solution of period T
which is such that the initial values of the eight variables are functions of

which reduce to

Ao, A_, Ho, II_,

lo, l_, go, g_.

for _=O?
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Wewill operate as in the preceding article. Wewill first assumethat the
origin of time has been chosen such that to=O.

Then we will form, as in the preceding article, the functions F I and R.

According to the results of the two preceding articles, we must determine
' ' so as to make R maximum or minimum.the five constants HO, Ha, tO, go' go

A periodic solution will correspond to each maximum or each minimum R.

!

Value R considered as a function of tO, go and g_ is a periodic function of

period 2w. On the other hand, H O and H a are subject to certain inequalities (3)

which I will write, as in article 18_

IAoI>IHor, IA'oI>IH_I, 1IHoI--IHol <C<IHoI+IH_t. (3)

The two variables H 0 and H a can therefore only vary in a limited field.

The function R is therefore forced to admit one maximum and one minimum to

which periodic solutions must correspond.

One difficulty can, nevertheless, present itself, as in the preceding article.

Might it not happen that function R reaches it maximum at the moment when the /146

variables H 0 and H a reach the limits which are assigned to them by inequalities

(3)? What will then happen?

Let us assume first that the maximum is reached for

Ho = Ao.

We will then adopt the variables of article 18, i.e.,

A, A', _*, H',

),*, 1', v+*, g'.

We will set, consequently,

A;= 4+ go, _, = ¢%_Ao-- Ho)COSgo, ,+_,= _/._-AT=--Ho)_i.go.

We will then see that R reaches its maximum for

_ = ,_ = o,

and, as R can be developed in terms of the powers of _- and I_,, the difficulty
will be removed. 0

If, therefore, the maximum is reached for H0=_, it will not be less true
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that a periodic solution will correspond to this maximum;it will still be the
T__ !

same for the same reason if the maximum is reached for Ho-A O.

It remains to examine the case when the maximum would be reached for values

of H O and H_ satisfying the condition

C = -+- tto± H_;

but this case is one where the inclinations are zero; if therefore the maximum

is reached for similar values of H O and H_, we fall back on the case of the so-

lutions of the second kind studied in the preceding article. A periodic solution

will therefore still correspond to a similar maximum.

To summarize, we have demonstrated that function R always admits at least one

maximum and one minimum and that to each of these maxima and minima there corre-

sponds a periodic solution; however, one difficulty still subsists.

The solutions of the third kind which we have studied here include as a par- /147

ticular case the solutions of the second kind whose existence we demonstrated

above.

We can wonder if there exist others; this is what a more exhaustive examin-

ation is going to teach us. We will see that function R has other maxima and

minima than those which are produced when the inclinations are zero, and conse-

quently there exist solutions of the third kind distinct from those of the second

kind.

For this purpose, let us examine more closely the form of function R. We have

to satisfy, on the one hand, relations

ea ea ea
=o;

on the other, relations

dR
a,i, = =°" (5)

I say that we will satisfy conditions (4) by making

l_l= gu = g_ =o;

such that we will have only to satisfy equations (5), i.e., to seek the maxima
' only.and minima of R considered as a function of H 0 and H 0

I in fact observe that R is of the following form (if we ass"me, as we do,

i_
t0 O, _0'),

R = Z A eos(_f, l'g + _, g. + i', g_),
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A depending on AO, A_, HO, H_-

If therefore we assume

we will have at the same time

dR dR dR

ol__= = o70=°"

Let us imagine that we change variables by taking for new variables the eccentric-

ities e and e', and the inclinations i and i r, i.e., by setting /148

H0

y = Go= I_ ,fi-=:,

Oo _ Go cos i,

, H_
Go---- L'o _/I--Z-ee'_ = -_r,

r !0 o -- Go cosg,

such that one of the areal equations becomes

_Lo t/l-- e' sin/+ _'L_ _-- e" s,n F=o, (6)

and the other

Lo _/, -- e' cos i + [3'L o V"_ cos g = c. (7)

It is now a question of seeking the maxima of R considered as a function of

e, e', i and i', these four variables being assumed connected by the areal equations

(6) and (7). We can therefore write the equations to which we will be led and

which, joined to (7), must determine e, e', i and i' in the following form (where

k designates an auxiliary quantity):

dR kflLo eco_i

dR

_t" = _L°sin I,_--e s,

0a ,__' L'o e'cos:

dR
dF -----'__' L° slngt/l- e'----_"

(8)

Is it possible to satisfy these equations? To determine this, let us

the form of function R. I observe at the outset that this function depends

and i' only by their difference i-i', such that we have

examine

on i

OR dR

0--7"-_: =o.

Then R will present itself, in the form of a series developed in terms of the

increasing powers of e_ e', i and i'j such that the general term of the development

will be in the following form (to within a coefficient depending only on L 0 and L_)
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e_,e'=,i_,t'_,cos(-,,,10+ y.It+ 7,g0+ ?_g%).

In addition, we will have to have, as I said above, /149

and, on the other hand,

nyt-t-- n'_! = o

a, > I'll+ 73], _:> I't',+ 7_t •

! say that the terms of R for which _i and _2 will not be zero at the same

time will be of the third degree at least with respect to the eccentricities and

n-n I

to the inclinations, unless n is a multiple of 2

In fact, let there be two integers YI and Y2 which can be positive or neg-

ative, but which are not zero at the same time and which satisfy the equalities

If we set

ny,-i-n'7_=o , [7,-4-"I'=[:o, * or a

we will have
/_t /t

I see first that ¢ cannot be zero without YI and _2 being zero at the same

time. Because, on the other han% YI and _2 must be integers, and since ¢ is

equal to !l or to i2, the number 2n "would have to be integral, which means that
n-n"

n-n'
n would have to be a multiple of -_-- • This is what we will not assume.

Therefore, in order to calculate R up to terms of the second order inclu-

sive!y, it suffices to make in FI, _i=_2=0, i.e., to retain in F I only the so-

called secular terms.

Now the calculation of these terms was done long ago by the founders of Cel-

estial Mechanics. I will therefore restrict myself to referring, for example, to
S . •

Tisserand's Mecanmque Celeste (Vol. i, p. 406). We then find
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The coefficients A(0) B (I) and B (2)
which depend only on L0 and L_ are de-

fined in the cited work of Tisserand and _ designates a combination of terms of f150

the third degree at least with respect to e, e', i and i'.

The question is therefore to render this function R a maximum or minimum,

when assuming that e, e', i and i' are joined by the relation

pL.,VT----c,co,i+ iz'L_,_- _',co,_= c. (T)

Equations (8) can then be written (assuming, as above t_=g0=g_=O),

_B")e-- {_B")e'+D,-- k(_Loe + D,),

_B"_(£-- i)+ D, ----_(-(_Loi+ D_),

J3Lo _l/7-_--e',ini+ _'L_ _ e" sin F= o,
(9)

the D i designating a group of terms of at least the second degree with respect

to e, e' i and i'j °

2
P

As for equation (7), it will be written

_L0(e'+ _)+ _'L_(e"+ F')+ D,= p',

designating a positive constant equal to

m_Lo÷ _'L_--aC

(io)

and D 9 designating a group of terms of at least the third degree with respect to

e, e', i and i'

From equations (9) and (i0) we can determine e, e', i and i' as series de-

veloped in terms of the increasing powers of p, and this in six different ways.

Let us, in fact, set

e=cp, e'= d'[% i=,p, F= t'p;

let us substitute in equations (9), which we will divide by p, and in equations

(i0), which will divide by p2. The two members of these equations will there-

fore be developed in terms of the increasing powers of k, ¢, ¢', _, _' and p.

I will add even that the two members of these equations may be developed in

¢' ' t'-- ' k--ko(if these _uantitites are suf-terms of the powers off, c--co, --cot--to, q,
t t

ficiently small in absolute value), whatever the constants co,¢o,to,%, ko may be. /151
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For p=O, these equations reduce to

_B.'e- { Bc,,t = ki3'L_e,

}S,'(e-- O= k,_L. t,

pLot + _'L_ e= o.

(11)

Equations (ii) contain six solutions, namely:

,,= --_L,

k = B(I) _ "t- _ I _ E,# _---,0) t = t

,,= --_Lo

k = k,,

k = -- kt,

k = kt,

k = kt,

h ------_'LoL'e(_ Lo -+-_'L'o),

t _ :'-_0 t [ : ILI_ It.I-_- l['lt

|l _ w[ = tr z 01 It, = -- |l; -- F'I"

(12)

Each of these six solutions is simple, from which we can conclude, according

to what we have seen in article 30, that we can develop ¢, ¢', _; and _', and

consequently e, e', i and i', in six different ways in terms of the increasing

powers of p.

We therefore will be able to write

e =A,x(e), "'=A,x(P), i=/,,x(p),"=.f,,x(e), (1})

where I will be able to take on the values i, 2, }, 4, 5 and 6; we will take

l=l, when we take for a starting point the first of solutions (12); we will

take k=2, when we choose as a starting point the second of solutions (12), and

so forth.

From the six developments (13), the last four must be rejected, for they give

and the periodic solutions%o which they would lead do not differ from solutions

of the second kind studied in the preceding article. However, the first two can

be retained and lead to new periodic solutions for which the inclinations are not

zero, and which we can call solutions of the third kind.

The two developments do not lead, however, to two truly distinct periodic

solutions.

/152

We have studied more specially the solutions for which we have
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1_= go = _"o;

these equations express that there is a symmetrical conjunction at the beginning

of the period in the case of _=0.

One argument, quite similar to that of article 40, would show that for all

values of b there is still symmetrical conjunction at the beginning and in the

middle of each period.

This does not mean that there do not exist just as well periodic solutions of

the third kind for which there is no symmetrical conjunction; it might occur, in

fact, that function R admits other maxima or minima than those which correspond to

the case of _o-go-go-O.'-- '- There will therefore be room to return to this question.

Applications of Periodic Solutions

49. It iss as we have said, of infinitely small probability that in any prac-

tical application the initial conditions of motion would be found to be precisely

those which correspond to a periodic solution. It seems then that the consider-

ations set forth in this chapter must necessarily remain fruitless. Nothing of

the kind; they have already been useful to Astronomy and I do not doubt that as-

tronomers will often have recourse to them in the future.

I will show in the following chapter how we can take a periodic solution as

a starting point of a series of successive approximations, and thus study the

solutions which differ very little from them. The usefulness of periodic solutions

will then appear obvious.

However_ I want, for the moment, to place myself at a slightly different

point of view. /153

Let us assume that in the motion of an arbitrary heavenly body a very con-

siderable irregularity appears. It may happen that the true motion of this heavenly

body differs extremely little from that of an ideal heavenly body for which the

orbit corresponds to a periodic solution.

It will then occur rather frequently that for the considerable irregularity

of which we have just spoken we will have practically the same coefficient for the

real heavenly body as for this ideal heavenly body whose motion is simpler and

whose orbit is periodic, but this coefficient will be much more easily calculable

for the ideal heavenly body.

It is to Hill that we owe the first application of this principle. In his

Lunar Theory, he replaces this satellite in a first approximation by an ideal

Moon, of which the orbit is periodic. The motion of this ideal Moon is then that

which was described in article 41, where we spoke of this particular case of per-

iodic solutions of the first kind, the knowledge of which we owe to Hill.

It then occurs that the motion of this ideal Moon, like that of the real

Moon, is affected by a considerable irregularity well known under the name of

variation; the coefficient is approximately the same for the two Moons.
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Hill calculates its value for his ideal Moon with a large number of decimals. It

would be necessary, to pass to the case in nature, to correct the coefficient

thus obtained by taking account of the eccentricities, inclination and parallax.

This is doubtless what Hill would have done, if he had completed publication of

his admirable memoir.

Here is another case which will present itself often and to which I would

like to direct attention. We have seen above that the periodic solutions of

the first kind cease to exist when the ratio of the mean motions n and n' is

equal to

_- = J-T J,
n' J

/qT

j being an integer; that is to say, when -w----is equal to an integer j.
n -n

n I

However, if the relationship n'-n' without being integral, is very close to

an integer, the periodic solution exists, and it then presents a very considerable

irregularity. If the actual initial conditions of the motion differ but little /154

from those which correspond to a similar periodic solution, this large irregularity

will still exist and its coefficient will be appreciably the same; we will there-

fore be able to calculate its value advantageously by consideration of the periodic

solutions.

This is what Tisserand did (Bulletin astronomique, Vol. III, p. 425) in the

study of the motion of Hyperion (satellite of Saturn). The relationship of the
mean motion of this satellite to that of Titan is, in fact, very close to 3/4.

The same considerations are applicable to those of the small planets whose

mean motion is approximately double that of Jupiter, and which have been the ob-

ject of a noteworthy work by Harzer, and to the minor planet Hilda, whose mean

motion is approximately equal to 3/2 times that of Jupiter.

Tisserand reports, in addition, in the work which we cite the case of Uranus

and Neptune where the relationship of the motions is near 1/2. In all these cases

there exists an important irregularity and the study of this inequality can be

facilitated by consideration of periodic solutions of the first kind.

On the contrary, periodic solutions _ of the second and third kind have still

not received practical applications; everything indicates, however, that this

will one day come about, and this is what would happen if the conjectures of

Gauss on the subject of Pallas came to be confirmed.

Satellites of Jupiter

50. However, the most striking example is furnished us by Laplace himself

and by his admirable theory of the satellites of Jupiter.

There exist, in fact, true periodic solutions of the first kind when, in-

stead of three bodies, we consider four or a larger number. Let us consider, in

fact, a central body of large mass and three other small bodies of zero mass
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circulating about the first in conformity with Kepler's laws. Let us imagine
that the eccentricities and inclinations are zero, such that the motions are
circular. Let us assumethat there is, amongthe three meanmotions n, n' and
n", a linear relation with integral coefficients

• n+ _n'+_n'=o,

_, _ being three integers, first among them, such that

_+_+7 =° ;

we will then be able to find three integers _ k' and X", such that

and we will have

n =),A -+- B, n'= )JA ÷ B, n'=)JA ÷ B,

A and B being arbitrary quantities.

At the end of time T, the longitudes of the three bodies will have increased

by

_.AT-+-BT, ).'AT-t-BT, ),'AT÷BT,

and the difference of longitudes of the second and third satellites with the first

will have increased by

(), -- ),')AT, (). -- ).')AT.

If, therefore, we chose T such that AT is a multiple of 2_ the angles formed

by the radius vectors led from the central body to the three satellites will have

resumed their primitive value. Thus the solution considered for _=O is periodic
of period T.

Will the problem still allow a periodic solution of period T when we take

account of the mutual actions of the three small bodies, and their motion will no

longer be Keplerian, or in other words_ when we no longer assign to the parameter

the value O, but a small finite value instead?

An analysis very similar to that of article 40 proves that it is effectively

true; there is a periodic solution of period T analogous to the solutions of the

first kind and where the orbits are almost circular. The three small bodies are

as much at the beginning as in the middle of each period in symmetrical conjunc-
tion or in opposition.

Laplace has demonstrated that the orbits of the three satellites of Jupiter
differ very little from those which they would follow in a similar periodic sol-

ution, and the positions of these three small bodies oscillate constantly about

positions which they would have in this periodic solution.
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Periodic Solutions in the Neighborhood of a Position of Equilibrium

51. The periodic solutions which we have discussed until now are not the
only ones whose existence it is possible to demonstrate. Thus the Problem of
Three Bodies contains periodic solutions of the following nature: the two small
bodies describe around the large body orbits very little different from the two
Keplerian ellipses E and E'; at a certain moment, these two small bodies pass
very close to each other and exercise on each other considerable perturbations;
they then separate again and then describe orbits which closely approach two new

r

Keplerian ellipses E 1 and El, very different from E andfrom E'. The two small

!

bodies diverge very little from the ellipses E1 and El, until they again find

themselves very near each other. Thus, the motion is almost Keplerian, except

at certain moments where the distance of the two bodies becomes very small and

where very considerable but very short-lived perturbations are produced. It can

occur that these types of collisions are reproduced periodically and such that

at the end of a certain time the two bodies are again found on the ellipses E

and E'. The solution is then periodic. I will later return to this type of

periodic solution which differs completely from those which we have studied in

this chapter.

I will equally reserve for another volume the periodic solutions which I

have called those of the second kind and which I have defined in my memoir of

Volume Xill of Acta mathematica, but whose study cannot precede that of inte-

gral invariants •

It is, nevertheless, a category of periodic solutions the theory of which

resembles that for the solutions of the second kind, but of which I want to say

several words here, free to return with more detail at the proper time and place.

Let

dr I X,, dxsat -_t = x,. a_. = x,, (1)-- = .... dt

be a system of differential equations. I assume that Xi can be developed in

terms of the increasing powers of Xl, x2, ..,, xn and of a parameter _.

I assume in addition that for

.2" I ,.lift

we have at the same time (and no matter what b may be)

Xt ___. Xz __... _--- Xa = o.

Then system (i) will admit as particular solution

Z l _ Op .Z"1 _--- O_ . . ._ .T n _ O_
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and as the values of Xl, x2, ..., x are constants, this solution may be regardedn

as an arbitrary periodic solution.

I propose to study the periodic solutions which differ very little from them.

Let 81' 82' "'" _n be the initial values of Xl, x2, -'',x n ; let _i+_i , _ 2+

B2,..., _n+_n be the values of these same variables for t=T.

We can develop _i' @2' "'" _n' in terms of the powers of _i' _2' "'"
and _. n

Let us consider the following equation in S

where we assume that we have made

If this equation has no multiple root, I will call Sl, $2, ..., S its n roots.n

We then verify the functional determinant of _ with respect to _, when we
here make

/158

become equal to

& = (eS, T__ i)(eS, T__ I)...(eS- T- !).

In order for the considered solution to be periodic of period T, it is necessary
and sufficient that we have

+, = '_2..... +,, ----o. (2)

This system contains a solution which is obvious and which is the following:

(3)

This teaches us nothing new, since we already know this can be regarded as

a periodic solution of equations (i). Beyond this obvious periodic solution, do

these equations admit others which are distinct from, but differing from this

one by only very little? In other words, can equations (2) be satisfied when we
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substitute in them functions af _ instead of _, which, without being identically
z@ro, vanish for _=O?

If the determinant A is not zero, solution (3) is for _O a simple solution

of system (2); therefore, aside from solution (3), system (2) will not be able to

be satisfied by functions _ vanishing with _.

If, on the contrary_ the determinant A vanishes, we will be able to find in

one or several manners convergent series ordered in terms of the fractional powers

of _ vanishing with this variable and which, substituted in place of _i, will

satisfy equations (2). This is what a special discussion, to which I will return

when I treat periodic solutions of the second kind, alone would teach us; if

these series have their real coefficients_ they define a new category of periodic

solutions which exists for small values of _ and for which Xl, x2, ..., and xn
never take anz_hing more than very small values.

In order for A to vanish, it is necessary and sufficient that one of its

factors vanish, i.e., that we have

/159

"v'_T = lj

S. being one of the roots of the equation in S. In order for this to be possible,
i

it is necessary that S. be imaginary; the equation in S will then admit the i-
I

maginary conjugate root S. and we will still have
J

CSiT _ I 1

which shows that two of the factors of A will cancel at the same time.

Moons Without Quadrature

52. As application, let us again take the equations

--3_-_ -t- -- 0 (1)

These equations are satisfied if we make

i t ,
/___.

t
(2)

We see that _ and I] are then constants; equations (2) can be regarded as de-

fining a periodic solution of equations (i).

It is easy to perceive the astronomical significance of this solution. The

equation I]=O signifies that the Moon is constantly in conjunction or opposition,
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and the second of equations (2) signifies that the distance from the Moon to the

Earth is constant. This periodic solution is therefore nothing other than that

which Laplace defined in his Mecanlque celeste, Book VI, Chapter X.

However, we propose to determine the periodic solutions which differ very

little from it by applying the principles of the preceding article.

To do so, let us begin by assuming that the unit of length has been chosen /160
such that

3n t

and that the unit of time has been chosen such that

being a very small parameter.

If we set _=l+x, system (i) can be replaced by the following, which is ana-

logous to system (i) from the preceding article

dx=X'd--/ -d7=d_' a(, + _)#+ 3(, + a)'(x + ,)(_, )--, ,

d_ = _, d-_' -- a(_ + _)z'+ 3(t + ,,)' _._- -R? =

If we then form the equation in S from the preceding article, we have

S*-- aSt-- a7 -----o.

This equation admits two real roots and two imaginary roots

If we then take

s,=

we will have

T=

The determinant £ from the preceding article is therefore zero.

We can therefore form series ordered in terms of the fractional powers of

(here these series would be ordered in terms of the integral powers of fb)

and which, substituted in place of the 8i' satisfy equations (2) from the pre-
ceding article.
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We would verify (and I will return to this later) that the coefficients of these

series are real.

Equations (i) of Hill admit therefore periodic solutions differing but little

from solution (2). In the solutions _ remains very small and the Moon, conse- /161

quently, is always almost in opposition (or in conjunction). Hill therefore had

reason to state that we can imagine a class of satellites which will never be able

to be in quadrature; only the process by which he had thought he could arrive at

a result, which he had, shall we say_ guessed, was in no way capable of leading him

to it; for this class of satellites is not_ as he had believed, the analytical
continuation of that which he had first studied in such an exhaustive and brilliant

manner.

I will add that_ in this category of periodic solutions, the Moon is found

in symmetrical opposition at the beginning and in the middle of each period.

135



CHA_TER 4. CHARACTERISTIC EXPONENTS

Equations of Variation

53. It is very improbable that, in any application, the initial conditions J162

of motion are exactly those which correspond to a periodic solution; but it may

occ_ur that they differ thereby very little. If then we consider the coordinates

of the three bodies in their actual motion, and, on the other hand, the coordinates

which these three same bodies would have in the periodic solution, the difference

will remain very small for at least a certain time and we can, in a first approx-

imation, neglect the square of this difference.

Let

dz__jt= X, (i-- ,, _,. d) (1)
dt ""

be a syst_ of differential equations where X. are known functions of Xl, x2,i

...,x.
n

Let

art = _,(t), _r, = _.t(t),. .... x_ = ?_(t) (la)

be any solution of these equations which we will call a generating solution.

Let

_, = _,(t_+_,, _,=_,(0+_, .... , z_= _(t)+_. (lb)

be a solution differing little from the first.
f

If we neglect the squares of _, we will be able to write

d_t dXt dXt dXt

a--/= _-_ _,+ _ _, +...+ _;£ _,, (i=,, _.... ,,,). (2)

Equations (2) will be what we will call the equations of variation of equations

(i). We imagine that we may in a first approximation use these equations of

variation to determine _.

The preceding suffices to make the importance of these equations of variation

understood.

We are therefore going to make a detailed study of them, insisting especially

on those of the equations of Dynamics.

54. Let us again take equations (i) from the preceding article and equations

(2) which are their equations of variation.
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When we know a solution of equations (i) containing a certain number df

arbitrary constants, we can deduce from them particular solutions of equations

(2).

Let us assume, in fact, that equations (i) are satisfied when we set

zL =' ¢?,(t, h,, h, ..... hp), )_, = ?,(t, h,, h,, .., hp, (3)

.................. ....-..w I

x. = _.(t, h,, ht .... , by).

(3)
I assume that the generating solution is obtained by setting in equations

hi= ht =...'= hp _0,

where h I, h 2, ..., h are p arbitrary constants.P

It is clear that equations (2) admit the p particular solutions

d,_t d_t do,.

•h= _, t, = yq, ".., _, = y_-;,

d_?, d?t d?,,
t,=_g, _,=_-g, ..., _,=_-_'

t,._oi

It is understood that in these derivatives

we make the substitution

At .__ ht =...-_" hp -----o.

after the differentiation

Let us assume now that we know an integral of equations (i), and let

F(x,, art, ..., xn)= const.

be this integral.

As solution (la) we will have

F[_t(t),?,(t),...,o_(_jl= c,

and for solution (ib)

F[?_(t)+._,, _,(t)+ _: ..... ?,,(t)+ _.] = c',

16/AEL

c and c' being two numerical constants.

If we assume that values { are very small, it will be the same for c'-c

and, if we neglect the squares of these quantities, it will follow that
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dF dF dF
dx--_l_'÷ _ _'-+-'"+ _ _ = c'-- c = const.

dF
In the partial derivatives _ it is, of course, necessary after differ-

entiation to make the substitution

z,= _.,(t), :r_ = ._:(t) ..., z,= %(t).

Equation (4) then gives us an integral of equations (2); it is important to ob-

serve that this integral will generally contain the time explicitly.

Thus, if we know an integral of equations (i), we can deduce from it an

integral of equations (2).

Application to Lunar Theory

55. I spoke above, in article 53, of the possible applications of equations

of variation and of their usefulness for Astronomy. A striking example is fur-

nished us by Hill's admirable Lunar Theory.
_165

I said in article 41 how this astronomer and scientist, after having formed

the equations of motion for the Moon, studied in detail a particular solution of

these equations which differs but little from the solution corresponding to the

true initial conditions of motion. This solution is periodic and belongs to those
I designated in the preceding chapter under the name of solutions of the first
kind.

Holding to this solution, this comes back to neglecting at the same time not

only parallax and eccentricity of the Sun, but inclinations in the orbits and ec-

centricity of the Moon.

Nevertheless_ this first approximation permits us to know rather exactly, as

I said in article 49, the coefficient of one of the most important inequalities of
the Moon known under the name of variations.

Now let

z,= ?, (t), x, = _2(t), xa = 9,(t) = o

be the coordinates of the Moon in this particular periodic solution.

Let

be the true coordinates of the Moon.

In a second approximation, Hill neglects the squares of _ and therefore ar-

rives at a system of linear differential equations. In other words, he forms

equations of variation taking as a generating solution the periodic solution
which he had first studied.
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Nevertheless, this second approximation gives him someof the most impor-
tant elements of lunar motion namely the motion of the perigee, that of the node
and the coefficient of the erection.

Actually the results published concern only the motion of the perigee (Cam-
bridge, U.S.A. 1877, and Acta mathematica, Vol. VIII), but the numberobtained
is extremely satisfactory.

Equations of Variatiom of Dynamics

56. Let F be a function of a double series of variables

.Yt, 2% • -, .Y',_

and of time t.

Let us assume that we have the differential equations

_, aF ay, _ _ av (1)
a---i= a-_y,' -a-i- -a_"

Let us consider two infinitely close solutions of these equations, the first,

_1, Xly . . ._ :rn, YI7 ,YI_ ...I Y._

which will serve as generating solution and the second,

xl+_t, x2+_2, ..., xn+_,,, Y1+_1, y2+_2 ..... yn+_n,

values _ and _ being sufficiently small for us to be able to neglect their squares.

Values _ and _ will then satisfy the linear differential equations

d_i d t F . _-_ d' F 1

dt Zk

dr d d _ F d_ F

dt --Z_ dx---_x,. _"--Zk r,k,-- = dxid?'k

(2)

which are the variational equations of equations (i).

' , be another solution of these linear equations, such that
Let _i' I]i

a_i a,F 1
-- ay_'ay,_'*'
d_'t an F _, _ d2 F

(2')

Let us multiply equations (2) and (2'), respectively, by I]' _' -_i' _i and fromi- hi'

the sum of all these equations, it will follow that
f167
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or

d

or finally

_;_, - _', _ + ,_; _, - _ _, +... + _:,,¢,,- _;,-_n = _O._t. ( 3 )

Here is a relation which connects two arbitrary solutions of linear equations (2).

It is easy to find other analogous relations.

Let us consider four solutions of equations (2)

_t, _, _;, _7,

•., ,,;, _}, _7.

Let us then consider the sum of the determinants

where the indices i and k vary from i to n. We can verify without difficulty that
this sum is still a constant.

More generally_ if we form the sum of the determinants with the aid of 2p so-
lutions of equations (2)

this sum will be a constant.

In particular, the determinant formed by the values of the 2n quantities _ and

in 2n solutions of equations (2) will be a constant.

These considerations permit finding a solution of equations (2) when we know

one of its integrals and vice versa. Z168

140



Let us assume, in fact, that

is a particular solution of equations (2) and let us

arbitrary solution of these same equations. We must

_(_l_i- _+_,) = eonst.,

which will be an integral of equations (2).

designate by

have
_i and I]i

an

Reciprocally, lett ing

be an integral of equations

from which,

which

Z Ai_i-4-" Z Bird = const.

(2), we must have

[ _ d2F _ d_F )_k .+- _)' --:----:-. _k =o,
--ZiBi\ _i.ak d.a:id:ck z..akdwid.yk

shows that

identifying

at -- J._kdy, d-r_ Ak +2,_._ B,,

dBi _'_ d:F d_'F

It ._. Bi, vd:--Ai

is a particular solution of equations (2).

If now
@(_t, yi, t)= const.

is an

will be

will be

integral of equations (i),

_t+ _ _t = const.

an integral of equations (2), and consequently

d@ d'P
_'= _-y;y,' _' =- d_-'---;

a particular solution of these equations.
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If @=const., _l=const. are two integrals of equations (i), wewill have

x(d* d,V, da, d,_,'_a.ri dyt ax, l = coast.

This is the theorem of Poisson.

Let us consider the particular case where values represent the rectangular

coordinates of n points in space; we designate them by the notation with double

indices

"Till "_!l'l Z$1t

/169

the first index relating to the three rectangular axes of coordinates and the sec-

ond index with n material points. Let m. be the mass of the i-th material point.
We will then have i

d t a't; dV

V being the force function.

We will then have for the vis viva equation

{#='-'l'- v

dff.j, i, ,

y,,' = m,. --_Y'

X×_iF= " " --V=coast.
2 DI i

Let us then set

from which

(3)

and

d_,i _ dy,t
at = _y,i' --El- = - E_Tii" (i')

Let

xkt= ?ki(t), yhi= mt?_i(t)

be a solution of these equations (i'); another solution will be

z_ = _,+( t + h ), y_i = m,._'k_( t + h ),

h being an arbitrary constant.

(4)
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Regarding h as infinitely small, we will obtain a solution of equations (2')
which corresponds to (i') as equations (2) correspond to (i) /170

[_¢= h?',i(t) = It 7k---!, T,,Z-----hml?_(t) = h d---_,_'
ml

h designating a very small constant factor which we can suppress when we consider

only the linear equations (2') •

Knowing a solution

v
_='-, _=_-_m

of these equations, we can deduce an integral

_y_ __dV.-C _ _ = eonst.

However, this same integral is obtained very easily by differentiating the vis

viva equation (3).

If the material points are isolated from all exterior action, we can deduce

another solution from solution (4)

xtl ---- ?ti(t) _'- h + kt,

x,t = ?,_( t),

z,l = ?,_(t),

ytt = m_'t,( t) + mile,

.7",f= mt?',t( t ),

y,i= m,?_i(t),

h and k being arbitrary constants. Regarding these constants as infinitely small,

we obtain two solutions of equations (2')

_tt = I[, _l,, ----- _si = vpli --_- _ll,----- O, vltt=mt.

We thus obtain two integrals of (2')

_i_tl m_ Const.,

Z_ti t -- Z,mt _lt = const.

We can obtain these integrals by differentiating the equations of motion of /171

the center of gravity

_, mimtt = l_,.Ytl _, conSt..,

Z.,,,tt = const.

If we substitute in the solution (4) the rotation through an angle • about
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the z axis, we obtain another solution

•_'II = ?iicos_o -- ?_i sin w,

•_'II -= _Ii si_ co -I- ,_2i cOS co r

Regarding w as infinitely small,

TI_.__[----- e?,Li cosm -- ?'si sin _,
ml

.

y,_t= ?',ssin_ + ?'2_cosw,
nli

y___i = ?,=l.
ml

we find a solution of (2')

,i = -- Z2iy

from which the integral of (2')

_li = --y2i,

_21 = y,{,

_i = Oj

Zt( xl{_i-- y,l._,l -- xll_li + y,i_li ) = const.,

which we could also obtain by differentiating the integral of the areas of (i')

Z (xliy2i -- x,lyll) = const.

Let us now assume that function V is homogeneous and of degree -i with respect
to x, which is the case in nature.

Equations (i') will not change when we multiply t by X3, x by X2 and y by

X-I, X being an arbitrary constant. From solution (4) we will therefore deduce

the following solution

, y,_= _-Im,_,'_i •

If we regard X as very close to unity, we will obtain as solution of equa-
tions (2')

or

_,l = _=.,;-- 3 t ¢72,-,

_h-t= 2x_..z- 3t Y*--J,
mg

kl = -- mi¢_.i- 3 m,. t ?',,.

dV

_-i = -- yxi -- 3t _l_' (5)

from which the following integral of equations (2'), which, unlike those which

we have considered until now, cannot be obtained by differentiating a known in-
tegral of equations (i')

L-_.-% nti dx_i _ki + const.
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Application of the Theory of Linear Substitutions

57- Before continuing, I amobliged to recall someof the properties of
the linear transformations which will later be useful to us.

Let

(i)

be a linear substitution which unites the variables _ to the variables y.

determdnant of this substitution is

al a2 a3 ]

A = bt bt bz [,
Ci £'t Cl

The

and the equation

ttt- S a t a 3 [

b,-s b, 1=o (2)el ct c_ _ S

is called the equation in S of substitution (i). If we make the same linear sub-

stitution for _ and for y, that is to say, if we set

"(_-- _t,, "(t+ ;_t,t'#t + ),i,3"f3,

X being constant, y' and _' will be connected by linear relations of the same

form as (i), and we will have

r', = v, It, + t,; iv,+ b', _;, (3)

The linear substitution (3) will then be called the transform of substitution

(i).

The theory of linear substitutions teaches us:

(i) that the new equation in S

a'_-S a_ a; "1

b', b_--S b_ I =oc_ _ cl--S

/__73
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does not differ from the old equation in S (2);

(2) that if the determinant A is zero as well as all its minors up to order
p inclusively, it will be the sameof the determinant

The minors of order p and _'are, in fact, linear combinations of minors of
order p of 4;

(5) that we can choose X so as to reduce substitution (2) to as simple a
form as possible, called the canonical form. Here is what this form consists of:

If the equation in S has all its roots simple, we can cancel at the sametime
, , ,, bI, , cI, c2"

If the equation in S has a double root, we can cancel at the same time a_,

_, b3,' b_, cl; we then have b2-c2'- '.

!

If the equation in S has a triple root, we can cancel at the same time a2,

and bs_ we then have '- '- '.,. al-b2-c 3

In all cases, we can always assume that values _ were chosen such that

a_ = al =. b_ = o.

If the equation in S has a zero root, A is zero and vice versa.

Let us now assume that _ has all its first-order minors zero; then the same

is true for 4'. However, since

o'_= ol = bl = o ,

there are three of the minors of 4' which reduce to

' and _ are zero.they can vanish only if two of the three quantities al, b 2

However, these three quantities are the three roots of the equation in S.

Therefore, if the minors of A are still zero, the equation in S has two zero
roots.

The converse is not true.

In fact, the equation in S

t--S o o I
0 --S 0 -_o

0 I --S

Z174
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has two zero roots and all its minors are not zero.

We have assumed, in order to establish our ideas, that we were dealing with

a linear substitution in only three variables; but the same reasoning is appli-

cable whatever the number of variables may be.

If the determinant of a linear substitution is zero, as well as all its mi-

nors of the first, second, etc., of the (p-l) th order, the equation in S will have

p zero roots.

58. Let, as in the preceding chapter,

d_r i

dt (/=l, a, ..., n)

be a system of differential equations. Let

x,. = _(t)

be a periodic solution of these equations of period T.

Let, in a neighboring solution of this periodic solution, %0i(0)+8i be the

value of x. for t=O, and qci(O)+_i+_i be the value of x. for t=T+_.
l 1

Let us imagine the functional determinant of # with respect to

d+,
°o° ... o oo

..o °,o .°o o..

d,},, d+,,

We can regard it as the table of coefficients of a linear substitution T.

If we make x undergo a linear change of variables, values _ and _ will under-

go this same linear change, and the linear substitution T will change into the

transformed substitution in the sense of the preceding article.

We will therefore be able to choose the linear change of variables undergone

by x, _ and _ so as to simplify as much as possible the table of coefficients of

T, as was explained above. We can therefore always assume that we have made a

linear change of variables, such that

d+, (i)

each time that i<k.
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Ere

In this case the roots of the equation in S relative to the substitution T

d+, d+, d%
_,_ .... ,_.

We can in addition choose the change of variables which values x, _ and _ undergo
such that these roots of the equation in S present themselves in any order that we

wish. if, for example, the equation in S has two zero roots, we can choose this

change of variables such that

a_._, - _ =°"

If the equation in S has only one root equal to d_i, we will still be able

d_ 1

to choose the change of variables, such that one has, in addition,

d+, d_, de,

_- _, -...= -_ =o. (2)

Let us therefore assume that the equation in S has one and only one zero

root; according to the preceding_ we will be able to assume that this zero root

is _-, so that

d._,
a_---7=o,

and choose at the same time the change of variabl@s, so as to satisfy conditiona /176

(1) and (2).

If the equation in S therefore has one and only one zero root, it is always

permissible to assume that

d+, a+, de, a+, dq,, a+,,
_=_ ..... _=o, a-_,= _-_,..... _=o.

Definition of Characteristic Exponents

59. Let

d Jr i

at-X' (i=_,_,...,,,) (l)

K

be a system of differential equations where XI, X2, ..., Xn will be given func-

tions of Xl, x2, ..., Xn. We will be able to assume that either time t does not
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enter explicitly into these functions X. or, on the contrary, these functions X.
I I

• but also on time t; but in this last case thed_pend not only on xI, x2, .., xn,

X. will have to be periodic functions of t.
z

Let us imagine that these equations (i) admit a periodic solution

z_ = Ti(t).

Let us take this solution as generating solution and let us form the equations

of variation (cf. article 53) of equations (i), setting

and neglecting the squares of _.

These equations of variation will be written

cl_;i d'_i _, + dXt dXl71; = -g-x-;_, _, _' +" " + -_-. _""
(2)

clX i
These equations are linear with respect to _, and their coefficients _ (when x.

%
in them is replaced by Ti(t)) are periodic functions of t.

We therefore have to integrate linear equations with periodic coefficients.

The general form of the integrals of these equations has been seen in arti-

cle 29; we obtain n particular solutions of the following form

_1= e.,tS,,, _. = e',_S,t, _,, = e_,tS.,,
_,= .,,,s,,, h= _.,,s,,, _. = _,.,s.,, (5)

_t = e"tS,n, _, = e_tS,n, _n = e_'tSaa,

values _ being constants and Sik being periodic functions of t of the same period

as %(t).

The constants _ are called the characteristic exponents of the periodic so-

lution.

If _ is purely imaginary such that its square is negative, the modulus of

_t
e is constant and equal to i. If on the contrary _ is real, or if _ is complex

such that its square is not real, the modulus e_t tends toward infinity for t= +_

or for t= _ _ • If therefore all _ have their real and negative squares, the quan-

tities _i' _2' "'" _n remain finite; I will say then that the periodic solution

xi=_i(t) is stable; in the contrary case, I will say that this solution is unstable.

An interesting particular case is that case where two or several of the
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characteristic exponents _ are equal. In this case the integrals of equations
(2) can no longer be placed in form (3). If, for example,

equations (2) would admit two particular solutions which would be written

and

_1= extt_i,I

_t = lea't_i,I + ea'l_i,l,

and Si, 2 being periodic functions of t (cf. article 29).Si, l

If three of the characteristic exponents were equal to each other, not only

t but t2 as well would appear outside the trigonometric and exponential signs.

The Equation Which Defines These Exponents

60. Returning to equations (i) of the preceding article, let us consider

an arbitrary solution

z_= *el(t)+ _.

Let T be the period of the periodic generating solution xi:q0i(t); let _i(O)

+Bi_ be the value of x.l for t:O and 'l--_'(T)+Si+gi be the value of x. for t=T.
I

As values 9i vanish with _i and can be developed in terms of the increasing

powers of Bi, we can write, by the formula of TaYlor ,

dq, i d+,. a+_
_',= _ _,÷ _ _,+..-+ 7_- _+ ....t_pn

If the solution under consideration differs sufficiently little from the periodic

solution so that we can neglect the squares of {, we will also be able to neglect

the squares of _ and the following is obtained

d_,t d+t

In considering one of the particular solutions of the equations of variation

(2), we will have for t=O

/178

and for t--T

_= _
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Among these particular solutions, we saw in article 59 that there are n of

them which are of a special form: they are solutions (3); let

}t = ea_tSI.k, _, = e_L_Ss,k, ..., _,, = da_tS,_.k

be one of these solutions (5) where, by suppressing the index k for brevity in

writing,

_,= e_tS,(t).

The functions S.(t) are periodic functions of t, of period T; we therefore /179
I

have, for t=O,

PL7 Sdo)

and, for t=T,

13_-+-_" = caTS,(T)--- e_TS_'(o) = e=Z[3_

or, replacing _i by its value,

dLbt d@l
(i=l, _, ..., n).

.. among these n equations, it follows thatEliminating BI, _2' "' _n

-I- ! --- ¢_IT

... .°..,...°..., °...

,fq,,, dq_,, ,/q,.

_o

gives us the following rule:

In order to obtain the characteristic exponents _ we form the functional

determinant of _ with respect to _; we form the corresponding equation in S: the

roots of this equation are equal to _-i.

In the partial derivatives _ it goes without saying that it is necessary,

according to the differentiations, to set _i=O.

Case Where Time Does Not Enter Explicitly

61. When time t does not enter explicitly into equations (i) of article 59,
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at least one of the characteristic exponents is zero. In fact, let

be the generating function; if we set

xl = :_(t + h),

h being an arbitrary constant, we will still have a solution of equations (i);

then, according to article 51, we will have a solution of the equations of vari-

ation, by setting

d_i d_i •= -a'h:= (4)

/180

However, q0i being a periodic function of t, it will be the same for its derivative

i
dt "

Solution (4) is definitely of form (3) (i.e., equal to an exponential mul-

tiplied by a periodic function of t). Only here the exponential reduces to unity

and the characteristic exponent is equal to O.

Q. E. n.

In addition we have already seen in the preceding chapter that in this case

the functional determinant of the Y with respect to the _ is zero.

New Statement of the Theorem of Articles 37 and 38

62. In article 37 we first saw the case where equations (i) depend on time

t and on a parameter _ and admit for b:O one and only one periodic solution.
We have seen that if the functional determinant

,_(_,. 6, ..... ._)
-_= z-_--,_s --._:i > °'

the equations will admit in addition a periodic solution for small values of b.

This determinant can be written

a+, a+, a+,
d_ d_"-_ "'" d_,_

d+, d+, d+:
a_, a_,

..o oo .... °o,

a_+__a+..._ ... a+.

Now the characteristic exponents _ are given by the equation /181
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___2 doer
_oel _T

_, +' - dh ""

aoe, aoe: e_ doe,

... .°, ............ • .,,

aoe. doe_ aoe.

_---0.

To say that A is zero is therefore to say that one of the characteristic ex-

ponents is zero, such that we can state thus the first of the theorems demonstrated

in the preceding section:

If equations (i), which depend on a parameter _, admit for _0 a periodic

solution of which none of the characteristic exponents are zero, they will admit

in addition a periodic solution for small values of _.

i 63. We can arrive at an analogous result when we assume, as in article 38,

that time does not enter explicitly into the differential equations.

We saw in article 38 that the sufficient condition for there to be periodic

solutions for small values o_ _ is that for _=O all determinants contained in

the matrix

d . dq,_ d+2d'_, ¢-
_-_1_,_, "- 7_. _
..... .-, ... . .......

,_q,,, aoe. a l,. aoe.

not be zero at the same time.

This granted, let us consider the equation in S

aoe, doe, doe,
-s _G ... _-_

doe, doe' S ... doe,.
_tsl diS,

..o.... ,..,..* ...

aoe,_ aoe. aoe.
a_---/ a_; ... _ - s

0

aT
As we saw in article 60, its roots are equal to e -!, T being the period and

a characteristic exponent. Time not entering explicitly into the equations,

one of these exponents must be zero according to what we saw in article 61.

The equation in S has therefore at least one zero root; I say that if it

has only one_ there will still be periodic solutions for small values of _.
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In fact, according to what we saw in article 58, it is always permissible

to assume that

d4?l d+t d+t ddgt
_=_=_ ..... _-_ =o,
aq,, a+, aq,, aq,,,
_ = _ = _ ..... _ = o.

The first member of the equation in S is written

--S

a+, a+, a+,
_,-s _ ... a_--S

a+, a+, s .. a+,

,.. , .............

aq,_ a+. a'+.
a_, _ _-s

If, therefore, the equation in S has only one zero root, the functional

determinant 6 of _2' _3' "'" _n with respect to _2' _3' "" "' _n will not be
zero.

Then the determinant obtained by suppressing the first column in the matrix

will be reduced to

fl,l,.
I say that it is not zero; in fact, _ cannot be cancelled for the following

reason:

We cannot have at the same time

d+, d+, _ d+_
-RZ = --d._...... -d_( = o.

If it were so, that would mean that if we consider the periodic solution

zt = _?t(t), z, = _,(t) .... , :r,,= _,,(t),

which corresponds to _=0 and which serves us as a starting point, we have for J183

t--T (and consequently still for all values of t)

d:rl dxl dr,,
d---F= "-R-/"..... "-d7-=°'

such that _l(t), q02(t), ..., _n(t) would be constants, which we will not assume.

On the other hand, I say that
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d+! d+3 d+_
d_: -- _ ..... dz = o.

We have, in fact, as we saw above, p. 72,

d+l d+i d,>, d+l d+n d+l n).
_av _ + __- a-_ +...+ --_- _ = o (_=,,_, -..,

Now _ =0; we therefore have a series of linear equations

d_ I

d+_ d+t _. d+_ (i _, 3, n),a__::_ +...+ _ __-o ......

and, as the determinant of these equations (i.e., 6) is not zero, it follows that

As we have excluded the case where _l(t), _2(t), '' ", _n(t) are constants, a

case which will be examined separately, in article 68, we conclude from this

that d@l •
--_-<O.

Q.E.D.

Thus, if the differential equations do not contain time explicitly, if they

admit a periodic solution for _=0, one of the characteristic exponents of this

solution will always be zero; if, in addition, no other of these exponents is

zero, there will still be a periodic solution for small values of _.

Case Where the Equations Admit Uniform Integrals

64. Let us assume that equations

dxl v
-3-i- = ,.l (i:l, _, ..., n),

(x)

• and of t, periodic of period
where X. are uniform functions of xI, x2, • ., xn

x

2w with respect to t, admit a periodic solution of period 2w_

such that _i(_=)_ _i(o) is an independent integral of time

F(xt, x2, •.., Xn)_ coast.,
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uniform with respect to Xl, x2, ..., x . I say that one of the characteristicn

exponents is zero, save in an exceptional case of which I will speak later.

Let us in fact define the quantities _ and _ as in article 37, and let us

consider the functional determinant of the _ with respect to B. I say that this
determinant is zero.

In fact, we have identically

F[ _.do) + P,"+ q_,) = F [?,-(o) + 13,.].

writing, for brevity, F(x i) in place of

F(x,,_2,...,x,j).

Differentiating this identity with respect to _i' we find

dF d+, -_ dF d'._l
d-xz d_i ' dx2 d7+''" +- --

aF a+. (2)
O°

d_rn d_l

dF dF dF

It is necessary, in a-_,' a_,' ""' aZ' to replace Xl, %, ..., xn by q_(O), _2(0),
• .., _n(0) •

In equations (2) we can make i=l, 2_ ..., n; we therefore have n linear

equations with respect to the n quantities

dF dF dF

Then one of two things is so: either the determinant of these equations (2),

i.e.j the functional determinant of _ with respect to _, will be zero, or else,

according to what we have seen in article 62, one of the characteristic exponents
will be zero.

Or we have at the same time

dF dF dF

_, - d_, ..... _ = o. (3)

These equations will have to be satisfied for

x,: ._,(_=), x,: _,(._), ..., _,,= 9,,(_r,)

or, what amounts to the same thing, for

x,: %(o), x,---?,(o)..... x_ = .o,,(o).

But the origin of time has remained entirely arbitrary; we must therfore con-

clude that equations (3) will be satisfied whatever t may be, for
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x, = _,tt), z,=9,(t), ..., x,=?a(t).

We can again make this clear in the following manner:

Let us assume that equations (3) are satisfied for a system of values of x I,

• • I say that they will still be satisfied for an infinitely near sys-
x 2, •., x n,

tern Xl+dX I, x2+dx 2, ..., Xn+dXn, provided that we have, in conformity with the

differential equations,

dr, dx, _ dr,,
-Xt - -X_- X.

In other words, I say that equations (3) entail the following,

d_F d_F d_F

X,+ dxidx, X_+...+ dx_ dx,,
Xn:o

(i=I,'% ..., n).

In fact, we have identically (since F is an integral of the differential

equations)

dF Xt-+- dF dFdx---] d-i, X' +"" "+ _-: x_=°"

Differentiating this identity with respect to xi, it follows that

t' a,F axe4
.g_kdx_dx, X,+ _ "dxT/=o
1"=!

where, by virtue of equations (5),

/186

_F

Zk dx-7-d-z, X, = o.
Q.E.D.

Thus, if the differential equations admit a uniform integral, one of the

characteristic exponents of an arbitrary periodic solution will be zero, at

least all the partial derivatives of the integral do not vanish identically for

all points of this periodic solution. This last circumstance will occur only

in exceptional cases.

65. Let us still assume that differential equations (i) contain time ex-

plicitly and are, with respect to this variable, periodic functions of period 2w.
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I say that if the differential equations admit two uniform integrals, F and

FI, two of the characteristic exponents will be zero.

We will find, in fact, as in the preceding article,

(2)

(i_ ],2, ..., n)

[x, = ?t(o), z, = _,(o), .... x,, = _,,(o)].

We can conclude from this that not only the functional determinant of _ with re- Zi87

spect to _ is zero, but the same is true of all its first-order minors, unless we

have at the same time

dxl dw, dr,,
aF, -----'_7 .... -- dF,

dxl dx2 dx,,

(3)

However, according to article 57, this can take place only if the equation

in S, formed with the aid of the functional determinant of 4, has two zero roots,

i.e., (since these roots are equal to e°T-l) if there are two zero characteristic

exponents.

If, therefore, there are two uniform integrals, there will be two zero char-

acteristic exponents, unless equations (3) are satisfied at all points of the

periodic solution, which can only happen in exceptional cases.

It may be demonstrated also that if there are p uniform integrals F I, F 2,

..o, Fp, p of the characteristic exponents will be zero unless all determinants

contained in the matrix

dF_ dFI dF, ]

°" ............ I

dF v dF v dFp ,

vanish in all points of the periodic solution under consideration.

66. Let us imagine now that time does not enter our differential equations

explicitly, and in addition, that these equations admit a uniform integral
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F(xt, x2, • •., xa)---- const.,

independent of time t.

I say that two characteristic exponents will be zero.

We first saw that one of these exponents is always zero when time does not

enter explicitly. If, in addition, there is an integral F, we will have, as in

article 64,

F[?i(o)+ _i_ _?i]= F[?i(o)+ _,'],

and, differentiating this relation with respect to _i and _ it follows that

dF d+t dF d_2 dF d'_a
a_--q_ + _ _, +':'+ _,. _ =o

(i= I,a, ..., n),

d.xt d_ +-----
dF d+_ dF d'_4
dxs d'_ +'" "+ dxa d_ o

f188

From this we conclude either that we have at the same time

dF dF dF
a_--q= a_ ..... e_,--:= o

for all points of the periodic solution, or that all determinants contained in the

matrix

a,h a+__a, . d.,_, a,,_,

d_, a+: d I,, d+,
aT. _ a._,. a.:
o., ........ ° ..... .

a+., a+,, a_. a+,,

are zero at the same time.

Nowwe saw in article 63 that this can occur only if two characteristih ex-

ponents vanish.

67. I now propose to establish the following:

Let us still assume that time does not enter explicitly into our differential

equations; let us assume that these equations admit p analytic and uniform integrals

and where time no longer enters explicitly. Let F I, F 2, ..., F be these p inte-P
grals.

Then, either p+l characteristic exponents will be zero, or all determinants ___

contained in the matrix
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(i--l,'_,:...p; k=l, ...,n)

will be zero for all points of the periodic generating solution.

Let us assume, in fact, to fix the ideas,

n=4, p----2.

We will then have the following equations

(i= ,,a,3,4),

From these equations it is permissible to conclude:

either that all determinants contained in the matrix

!; dF, dF, dF: d F, 'I
,i .... II

" d.rz dz t d.r_ dz,
t

at, ev, +v, dr, i]3 °

II da't d..rt dx_ dx, ii

are zero at the same time; or that all determinants contained in the matrix

d',_, dd/t d+t d'St d'_,

d+, d+: d.'_; ,++., d+,

d+, d+, d,_?, d+, d+,

(1)

are zero at the same tim% as well as their first-order minors.

According to what we saw in article 58, we can always assume that

2_=o

for

Li9o
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i<k.

On the other hand, all of the minors of the determinant obtained by suppres-

sing the last column of the matrix (i) having to be zero, the corresponding equation

in S will have two zero roots: I may therefore assume

d+_

I propose to demonstrate that the equation in S has a third zero root and conse-

quently that we have

a+,
a-_ =o

or

a_3,
--0.

In fact, according to the same definition of _i' we have _i=O if we make

h being an arbitrary constant; from which by differentiating with respect to h and

then making h=O,

_ _(o)=o.

However, , d+_..
_k(o) = "3_-.'

therefore we have

d_i d+, d+i d+, d_+i dq+3

Setting i=l, it follows that

whence

"_ 0

dh

a+,. aq,,
d_, ct_

=o (i=I, a, 3,.4).
(2)

//191

or
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d_l

d_ o

In the first case, the theorem is demonstrated; in the second case we write equa-
tion (2) by setting i=2; it follows that

whence

or

a+,
d_

In the first case_ the theorem is demonstrated; in the second case, we have

d+, d+
-d-_-_= --3T = o,

from which we can conclude (since we exclude the case where all the -_-_-are zero

at the same time) that d-_- and d7 are both zero. Let us form the minors which

we obtain by eliminating in the matrix (I) the third and fourth columns and the

third row (or the third and fourth columns and the fourth row).

These two minors will have to be zero, which gives us

at+,a,}, a+_ a+, a+, a+,

d+, d+,
from which we obtain this conclusion (since -_ and _ are not both zero) that

we have

or

Q.E.D.
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68. In the preceding articles we excluded the case where J192

?,(0, ?,(;), -.., ?..,(t)

are constants, i.e., the case where we have at the same time

-_.( = --g_(..... --_- = o.

If we always assume that time does not enter explicitly into the differential

equations, we then have the equations

dOct d@, . d'b, d@, aC a+,,
.... +'" "+ _/434 d_

-- -- -_.0,

However, these equations no longer imply the consequence that the functional deter-

minant of _ with respect to B be zero, or that one of the characteristic exponents

be always zero.

If the differential equations admit p integrals, we will therefore be able

to conclude only that there are at least p zero characteristic exponents (and not

p+l), as in the case where time enters explicitly into the equations.

Case of the Equations of Dynamics

69. Let us now proceed to the equations of Dynamics

dr_ dF dv_ dF
d-7 = "_yi' _ = dxt ( i = I, _, ... n),

(1)

where I assume that time does not enter explicitly. They will admit the vis viva

integral

F = const.

Let us assume that equations (I) admit a periodic solution of period 2w

zt= _i(t), y,= #dr),

and let us form the equations of variation by setting

zt= +lCt)+5, y_= _lCt)+ m.

if [i'- -_i and [".i,I][iare two arbitrary particular J195We in article 56 thatsaw

solutions of the equations of variation, we have
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I say that the result of this is that the characteristic exponents are equal in
pairs and of opposite sign.

oLet in fact _i and be the initial values of _i and _ for t=O in one of

the solutions of the equations of variation; let _i and be the corresponding

i i will be linear func-
values of _i and of _ for t=2w. It is clear that _i and T1i

0 _ O 0 O into
tions of _i and of i ' such that the substitution T which changes _i and_ i

i i will be a linear substitution.
_i and _ i

Let

all all2 • • • Q|,|n

.... o..... ooo

a|n,I ainu2 • • • al_n2n

be the matrix of coefficients of this linear substitution.

Let us form the equation in

all -- ), all . . . al,_n

all all- ). ... al,Tn

o.. ..... . .... ....

aln,I aln,l .. • Ol,,,,ta -- ).

=o.

The 2n roots of this equation will be what are called the 2n multipliers of the

linear substitution T. However, this linear substitution T cannot be arbitrary:

it is necessary that it should not alter the bilinear form

_:_(_,_- _.).

For this to be true, the equation in X must be reciprocal. In fact, the

theory of linear substitutions teaches us that if one linear substitution does

not alter a quadratic form, its equation in S must be reciprocal. If therefore

we set

the quantities _ must be equal in pairs and of opposite sign.

Q.E.D.

We will return to this point in article 70.

70. Equations (i) from the preceding article always admit the said vis viva

integral

f194
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F : const.

I assumethat they admit, in addition, p uniform integrals

F, -----const.j F, ----const., -- .7 Fp = const.

I assume, in addition, that the brackets formed for each pair of these integrals

are zero, i.e.,

[Fi,F,] = o (i,k,= r,2.....p).

We know, in addition, that for an arbitrary integral F. we have
1

[F, Fl]= o.

I propose to demonstrate that in this case either all functional determinants of

F, FI, F2, ..., Fp, with respect to arbitrary p+l of the variables x.1 and Yi' are

zero at the same time at all points of the periodic solution, or 2p+2 characteristic

exponents are zero.

In fact, let us again take equations (2) from article 56, i.e., the equations

of variation (i). Let

_1_ _i

be a particular solution of these equations (2); let us call this solution S;
!

let gi' _ be another solution of these same equations; let us call this solution
S'

We know that we have

I will call (S, S') the first member of this relation.

We have seen in article 59 that among the solutions of the proposed equations

there are some of which the form is notable. For these, each of the quantities _i

and _i is equal to an exponential e_t multiplied by a periodic function of t. /195

I will call them solutions of the first kind.

et

For others, each of quantities _i and _i is equal to an exponential e ,

multiplied by an integral polynomial in t, of which the coefficients are periodic

functions of t. I will call them solutions of the second kind.

Equations (2) can admit only 2n linearly independent solutions. An arbitrary

solution may therefore always be regarded as a linear combination of 2n solutions

which may be called fundamental.
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If of 2n characteristic exponents p are distinct, we will be able to choose
as fundamental solutions p solutions of the first type and 2n-p solutions of the
second type.

Let

St, St, ..., Sq

be q linearly independent particular solutions of equations (2) and let us desig-

nate an arbitrary solution by S_

There may not be more than 2n-q linearly independent solutions S' which satisfy

conditions

(St,S')--(S,,S')..... (Sq,S')= o. (3)

In fact, let

be the solution Sk; let us retain the letters _i and _'i to designate solution S';

then relations (3) give us q linear relations between _i and _';l these relations

are distinct if the particular solutions SI, $2, ..., S are linearly independent.q

They will therefore serve to lower by q units the order of the linear differential

equations (2). After this reduction, these equations will retain only 2n-q

linearly independent solutions.

Q.E.D.

This granted, let us assume that S is a solution of the first or second kind,

admitting as characteristic exponent _ and that S' is a solution of first or sec-

ond kind admitting as characteristic exponent _ . Let us form the expression

(S,S'_

This expression is of the following form: an exponential e(e+B)t, multiplied by

an integral polynomial in t whose coefficients are periodic functions of t.

/196.

However, this expression must reduce to a constant. It is clear that this

can occur only in two ways:

either if this constant is zero;

or if e+_=O.

From this we can conclude that if there are q characteristic exponents equal

to +% there will be q equal to -_ which confirms the result obtained in article

69. If, in fact, there are q exponents equal to +_ there will be q solutions of

the first kind or of the second kind linearly independent and admitting _ as ex-

ponent.

166



Let SI, S2_ ...; S be these q solutions.q
There can be no more than 2n-q linearly independent solutions S' which satisfy

the relations
(St, S')= (st, S') ..... (sq, s')= o.

Consequently, among the fundamental solutions (which are all of the first or

second kind), there will be q for which one of the constants (S i, S') at least

will not be zero, and consequently for which the exponent _ will be equal to -_.

71. Let us now assume that equations (i) admit an integral

FI _ eola$t.

According to what we.have seen in article 54 , equations (2) will admit as

a particular solution

d[, dF,

_l dF1

Let us call this solution S I, the functions _ii and --dyi (where we must replace

x._ and Yi by their values corresponding to the periodic generating solution) will

be periodic functions of t. Therefore solution S I is of the first kind and its

characteristic exponent is zero.

If F2=const. is another integral and if we call S2 the solution

dlct dlCt

it will follow that

(St, St)= [Ft, Ft].

Let us assume therefore that our equations (i) admit p+l integrals

F = _nst., Ft = const., Ft = const., ..., Fp = const.,

and let

S, St, St ..... Sp

be the p+l solutions of equations (2) which correspond to these p+l integrals.

One of two things is true:

either these p+l solutions will be independent;
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or all functional determinants of F_ FI, F2, ..._ F with respect to p+l vari-P

ables chosen amongx. and y_ will be zero at the sametime in all points of the
i

periodic solution.

S
P

Let us assume that this is not the case and that the solution S, SI, ...,
are independent.

We will in each case have

[F, F,'] = o (i= 1,2 ..... p),

from which

I assume that we have in addition

[Fl,F,] = o

We equally have

($, St) = o.

(i, A = ,,a, .... p).

(Si, Sk)= o.

I will choose for the 2n fundamental solutions the p+l solutions S, SI, $2,

..., S and 2n-p-i other solutions of the first or second kind.
P

Among the fundamental solutions, there will certainly be p+l, which (if I

call them S') will not at the same time satisfy the relations (S,$')=(S,,S') .....

CSp,S')= o,and which consequently will have a zero characteristic exponent.

However, these p+l solutions will not coincide with the p+l solutions

S, S1, ..., Sp.

I say that we cannot have, for example;

Am

for we have, by hypothesis,

S' = Sk,

(S, Sk)= (S,,S_) ..... (Sp,Sk)= o,

and, according to the definition of S', S' does not enjoy this property.

There are therefore altogether 2p+2 fundamental solutions of which the ex-

ponent is zero; there are therefore at least 2p+2 characteristic exponents which

are zero.

Q.E.D.
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Let us now assume that there exist p integrals (in addition to F=const.).

F I_ const._ F s_ const.j Fp _--- co_$[._

but that the brackets formed from the pairs of these p integrals are not zero. All

that we can affirm then is that p+2 characteristic exponents will be zero. How-

ever, we will know that p+l fundamental solutions at least (which are those which

we have called S, S I, $2_ ..._ Sp) will be of the first kind with a zero exponent.

If, therefore_ we established that equations (2) only admit p linearly in-

dependent solutions which are of the first kind with a zero exponent, we would
be certain that equations (i) do not permit=p+l integrals (including F=const.),

or at least that, if these p+l integrals exist_ all their functional determinants

with respect to p+l of the 2n variables x and y are zero simultaneously in all

points of the periodic solution.

Changes of Variables

73. Let us see what changes take place in the characteristic exponents when

we change variables.

Let

dx.__L= X_
dt

Z199

be our differential equations, where I will assume that time does not enter ex-

plicitly. Let

be a periodic solution of period T.

whence the esuations of variation

d_t _'_ dXt-
_.

d--/ =_

Let

be a solution of these equations of variation, _i being periodic in t.

Let us change variables by replacing time t by a new variable T defined by

the relation ,= =
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dt

d_

@ being a known function of xI_ x2, ..., Xn= whence follow the differential

equations

dz_ (la)
-_. =Xi@

and the equations of variation

(2a)

Equations (la) admit a periodic solution

xt= _(_)

corresponding to

and whose period is equal to

_ = _(t )

/20C,

We must replace x. by _i(t) in @ before integration.
I dt

In order to solve equations (2a), we will take account of the value of d--_

and we will write them as

d_

db X' dXl ,_ ,_ dx----_"_k
d--i =z_._ _ _*+ -'t 2.., - '_

Let us then set

it follows that

-- d---xkXk =Z _ 7_k+ _ Xk+_ d-xx, T,I,+ --6" --_-.__--kkX_,

which shows that we can satisfy equations (2b) bV taking
d), _ de, _. d,p

el, 2., X_•,1= e_t+i(t) and -_ = _ + _ d_t.

From this we can conclude that

)_ = e_tO(t)
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and that

_i= e_t6i( t),

_(t) and _i(t) being periodic in t. It will then be necessary to replace it by

its values obtained from the equation

dt

= +[_,,(t), _,(t) .... , _,,(t)l.

We thus find

T

f(_) being a periodic function of _; we therefore have

+, [+ ]_t= e e,,rc;_o,,y,_ -+-f(_),

which shows that after the change of variables the new characteristic exponents /201

T
are equal to the old, multiplied by _q"

Development of Exponents. Calculation of the First Terms

74. Let us return to the equations

d:c_ dF dvl dF (i)

d--/-= d_:,' --37--- dz_ (i= _,•....,n)

of article 13 with the hypotheses of that article.

Let us set

For _=0; x are constants and we hay% on the other hand,
i

values _. being constants.
l

0
0 O 0 be values of n. such that the quantities n. T are multiples

Let nl, n2, "'" nn I m

O
of 2w. Let x. be values of x. such that

I l

_- -----fl_.

We have seen in articles 42 and 44 that equations (i) will admit a periodic so-

lution of period T which will be developsble in terms of the powers of _ , and which

for _=0 will reduce to
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z_ = xL 7, = ,,o t + ,_,

0
_. being certain particular values of the constants w,. This granted, let us
I I

imagine an arbitrary _olution.

0

Let xi + _8i be the initial value of xol and m.1 that of -iy-for t=O. Let Ax.l be

0

the increase which x. undergoes and niT+Ay i the increase which Yi undergoes whenz

t passes from the value 0 to the value T.

This is how we will form the equation which gives the characteristic exponents.

We will construct a determinant of which the elements will be given by the follow-

ing table. In this table, the first column indicates the row number, the second

indicates the column number and the third introduces the corresponding element of

the determinant.

Row No. Column No. Expression
of element

- dl3t

dAxl

i (i<= n) k = i d_----7-- S

dAxk

i+n (i>o) k (k=_n) dt_

i (i <-n) k+n (k>o) dAY_

i+n (i>o) k+n (k>o,k'_i) dark

dAyl

i+n (i>o) k+n=i+n d_i--S(t).

(2)

Equating the determinant thus formed to zero, we have an equation in S whose

roots are

e_T __ 17

being one of the characteristic exponents.

0

Values _xi and _Yi can be developed as power series in _, B.I and m.3_-m..x The

same is true for the quantities

d'_x, daxh. dA)-_ dAy_

d_, ' _G-' --d_7' e_--T. ( 3)

llt is thus, for example, that the first elemmt of the k-th column will be equal

d_x k

to _ provided that 'i_n,k_Sn,k_i.
i
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Wemust here replace Bi and _'l by the values which correspond to the periodic so-

lution and which can be developed as a power series in _ such that after this
substitution the quantities (3) will be developed as a power series of _.

Since, on the other hand_we have

we see that our determinant is an integral function of _, developable in addition
as a power series of _. I will call this function G(_, _) and I will havej in order
to determine _ as a function of _ the equation f203

G(_, _,) = o. (4)

This granted, let us set

Let us divide the n first lines of the determinant, as well as the last n columns

by _. The elements of the determinant will become, by writing them in the same

order as in table (2),

dAxk dAxi S dAx_. dAy_- d_j't, dAri S

and equation (4) becomes

_-a G (s V"_, t_) =G,(a, ¢_) = o.

Let us determine what this equation becomes for _=0 or, in other words_ let us

form the determinant GI(¢,O).

Therefore d._x, d_xk
For _=0, Axk is zero, and Ayk depends only on _i"

dXyk
and _ are divisible by _. We therefore have

i. daze. ,. d±yk
|m _ -- Ilm ._--- -- 0 _ =0.

_/_ d_, _/,_ d_i for

On the other hand,

S e'h ¢_-- j
llm---_ = lim

¢5
_-:T.

It then follows that (for _=0)

[_T dFo dt = _ T dFo
_.n-= -jo a_--Z- a_--_"
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In dF, 0
_, x.1 must be replaced by xi+_ i. We therefore have

d_,y_ d_ Fo .

d_l = -- T -dxidxk

0
an F,

In _ one must after differentiation make _i=O, i.e., x.=x..1l

We have (still for _=0)

Tin_ _

dy k , we replace x i

T

-- Axtt = f _ dt.

I_ do ctyk

0

by x. and Yi by n.t+_., which shows first thati I I

dFt dFt

ay--S= d-ff_•

As we propose to differentiate 5x k with respect to the _'l' but not with respect

to Bi, we can immediately give _i their final values and make

_=o, whence n----n_.

Then F I becomes a periodic function of period T with respect to t and of period

2w with respect to the w.. Let
i

IF, l= rt

be the mean value of F I, considered a periodic function of t; it follows that

_"rk = T dR
-5- _ '

from which

dAxk aTMR

I_d_ L _ T d_---_k"

/204

Thus the elements of the determinant GI( c, O) will be, writing them in the same

order as in table (2),

d_R d"Fo

o, --¢T, Td_i.7_ k, --T_, o, ---=T.

We thus have an algebraic equation in c; in general, this equation will have two

zero roots and all others will be distinct and different from O. Applying the

theorem from article 30, we will see that we can conclude from the equation
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the c (and consequently _) are power series in r_.

We are therefore led to discuss the equation

G_(¢, o) ----o.

If we change ¢ to -% this equation does not change.

In fact, if we multiply the n first rows by -i, as well as the last n columns,

the determinant will not change, and none of the elements of the determinant will

change either, with the exception of those elements on the principal diagonal which

were equal to -eT and which became equal to +¢T.

I say that the equation has two zero roots. If, in fact, we make ¢=O_ the

determinant becomes equal to the product of two others, namely:

(i) the Hessian of -TF with respect to x.;
O l

(2) the Hessian of TR with respect to the _..
1

This last Hessian is zero_ for we have, according to the defintion of R,

d' R d -_R d2R
_j_ 0

n_ dwsd_l + n_ d_,d_ "- .... n,, d_d_n
--o.

Therefore the equation is satisfied for c=O and, as its roots are equal in pairs

and of opposite sign, it must have two zero roots.

In order for there to be more than two zero roots, it would be necessary for

¢2 in G I to be zero. This coefficient can now be calculated asthe coefficient of

follows.

0
Let us multiply the first row of G I by n I and let us add to it the second

0 0 0

multiplied by n2, the third by n3, ..., the n-th by nn. All elements of G I remain

unaltered with the exception of those of the first row, which become

--n°¢T, --n°-:T, --n_OcT, ..., --n_T, o', o .... , o.

Let us now multiply the (n+l)-th column by nO and let us add (n+2)to it the -th

0 0

O the (n+3)-th by ny ..., the 2n-th by n .multipled by n2, n

All elements remain unaltered except those of the (n+l)-th column, which

become

o, o, ..., o, --nOcT, --n_¢T, ..., --n°sT.
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The determinant GI, by this double operation, has been multipled by (nO) 2 Let
2

us divide it nowby ¢ , dividing by ¢ the first line on one hand and the (n+l)-th
column on the other.

Let us then make¢:0 and we will have the desired coefficient.

The determinant thus obtained has its elements conforming to the following
table :

ColumnNo. RowNo. Value of element

i (i<n) I --n_T

n+l k (_<n) o
d_R

i+n (i>I) b (k>t,_<n) T_idw k

i (i<n) k (k>,,_<n) o
i+n (i>s) t o

d t Fo

i (i<n) k-+-n (k>o) _T_-x.dx_

n-4-s h'+n (k>o) --n_T

i+n (i>I) k+n (k>o) o

We see that this determinant is equal to within its sign

T in HI tI_.

Values H.I and H2 being the two following determinants

H t

n? .n;. ... nl o

d_Fo d2 Fo d_ Fo

d_ Fo d' Fo d 2 Fo

dxt d.rs dx-_2 dxs dxn nOl

.° .... . .... ° °., .° ...... ,.

d' Fo d' 1_o
_----(-(-(-(-('_7_........ dx',, n,*,

and H2 being the Hessian of R with respect to

l_ht t 'IErl j . • . _ l_n.

0 df 0
If I observe n. is equal, to within its sign, to .---, I can see that we do

I _x.
i

not change HI by replacing n. by _d'Po in the first line and the last column.
1

dx.
i

The determinant thus formed will be called the bordered Hessian of F0 with re-
spect to Xl, x2, ..., x .n
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Thus the equation GI(%O)=O can have no more than two zero roots, and conse-

quently, there cannot be any more than two characteristic zero exponents only if
HI or H2 vanishes.

In the particular case of the Problem of Three Bodies which we dealt with
in article 9, there are only 2 degrees of freedom, and we have

It then follows that

1

F° = 3 x_ + "rt"

dFo dFo
-- 0

dxt dx,

d I Fo d ! Fo dFo

dx] dxtdx 2 dx I

d t Fo d_ Fo dFo

dx, dxt dx] dx2

X'_ 3 I 0

3x; ; o --x_ 3

O O 1

d2R

therefore HI is not zero; on the other hand, it is verified that H2=-- _ is not
da_2

zero either.

Therefore, in this particular case of the Problem of Three Bodies, there are

two characteristic zero exponents and the other two are different from 0.

75. The determinant GI can be somewhat simplified by a proper choice of

variables. I say that one can always assume

= ..... <: o (l)

In fact, if this were not so, we would change variables by taking x_l and Yi' as new

variables and setting

y'i = cq,ly, + cq,ty2 +...+ _n,iyn,
- • t t
_i = _II')1 LZYl + ¢[i,tZl + • "'+ _i,n_li_

values _. being constant coefficients. After this linear change of variables,
l,k

the equations will be in canonical form.

0
After this change of variables, the quantities which will correspond to nl,

0 0 ,0 n.O 0
n2, ..., nn, and which we will call n i' 2' ..., n'n, will be given by the re-

lat i o ns n_° = _i,l n o+ _,,t n.° +... + _.,; n °,

J2o8

for
dF'o dF'o dFo '5_ dFo dxk dFo
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O 0 0
As the numbersnl, n2, ..., nn are commensurableto each other, we will

always be able to choose values _i,k in such a manner:

(i) that _i, k are integrals;

(2) that their determinant is equal to i. These two conditions are nec-
essary in order for F to remain periodic with respect to y', as it was with re-
spect to the y;

( 3) that
t o

,rL| = n30 _...--_- /'Lno _ O.

Thus we can always assume that conditions (i) are fulfilled and from this we

deduce the following equations

(2)
=o (i=,, 2, ..., n).

76. An interesting particular case is that where one or several of the var-

iables xi does not enter into FO. Let us assume, for example, that F O does not

depend on x • Then all elements of the n-th column (and those of the 2n-th row)
n

are all zero, except the one among them which belongs to the principal diagonal

and which remains equal to dr.

I will, in addition, assume that the variables have been chosen such that

conditions (i) and (2) from the preceding article are fulfilled. The result is

that the elements of the first row (and those of the (n+i)-th column) are all

zero, with the exception of the one among them which belongs to the principal

diagonal and which remains equal to -cT.

Thus all elements of rows i and 2n and all those from columns n and n+l are

divisible by _ (I will add that each element which belongs at the same time to one

of these two rows and to one of these two columns is zero and consequently divisible

by c2); the result is that the determinant is divisible by ¢4, and, consequently,

that the equation GI=O has four zero roots. /209

In what case can it have more than four?

In order for us to ascertain this, let us divide rows i and 2n and columns n

and n+i by ¢, and let us then make ¢=0. In what case will the determinant thus

obtained and which will be equal to

lim_ for ::o

be zero?

We can just as well divide the determinant G_ by c4T 4, suppressing lines i, n,

n+l and 2n and the columns from the same article. ± If we then set _=0, we see that

all elements are zero except those which belong to one of the n-2 last remaining
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columns, and to one of the n-2 first rows, or inversely to one of the n-2 first
columns and to one of the last n-2 rows.

Thus the determinant is equal, within a power of T_ to the product of two
Hessians, namely:

(i) the Hessian of F0 with respect to x2, x3, ..., Xn_l;

(2) and the Hessian of R with respect to w2, _3' "" "' Wn-l"

If neither of these two Hessians is zero, the equation GI=Owill not have

more than four zero roots and there will certainly be not more than four char-
acteristic exponents which are zero.

What does this condition becomewhen one assumesthat the variables are ar-
bitrary and that conditions (i) and (2) from the preceding article are not ful-
filled?

In this case, we will submit the determinant to the sametransformation as
at the end of article 74; we will then see, as at the end of this article, that
after this transformation, the elements of the first row becomeequal to

--n_--T, --n°_T, ..., --n_-T, o, o ..... o

and those of the (n+l)-th column to

o, o, ..., o. --n°_T, --n|:T ..... --n_-_T.

0

It is only important to observe here that nn is zero, since

dFo
d.2" n

We will be able to divide this determinant by c4T 4, suppressing rows n and /210

2n and the columns from the same numbers, and dividing the elements of the first

row and the (n+l)-th column by cT.

If we then set _0, we see that the determinant reduces to the product of

two other% namely:

(i) the bordered Hessian of F 0 with respect to Xl, x2, ..., Xn_l;

(2) the Hessian of R with respect to 0Y2, _, ..., Wn_ I.

In order for there to be more than four characteristic exponents, it is nec-

essary (but not sufficient) that one of these two Hessians be zero.

Let us assume that F0 not only does not contain xn, but does not contain Xn_ I

either; reasoning in this manner_ we would arrive at the following result:
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The equation GI( ¢,O) has still six zero roots; in order for it to have

more, it is necessary and sufficient that the bordered Hessian of F 0 with re-

spect to _i' _' "'" mn-2 be zero. This condition is therefore necessary (but

not sufficient)for there to be more than six characteristic zero exponents.

77. Let us again take the hypotheses made at the beginning of article 76,

namely that F 0 does not depend on xn and that conditions (i) and (2) from ar-

ticle 75 are fulfilled.

We have seen that the equation

G,(t, o) = o

then admits four and only four zero roots, and from this we have concluded that

there can be no more than four zero exponents. On the contrary, it is not per-

mitted to conclude from this that there are four characteristic zero exponents;

this proves only that, when one develops these exponents as power series of _j
the first term of the development is zero for four of them.

It remains for us to see if the following terms of the development are also
zero.

I know that two exponents are zero, since time does not enter explicitly in-

to the differential equations, and that F=const. is an integral. I propose to

find out what happens to the other two, and to do so, I am going to calculate

the coefficient of _ in their development.
L211

I am going to set

=n_,from which ¢=_.

I will divide the equation

GO,, _)= G(_, _)= o

by a suitable power of _ and I will then make _=0, and I will have an equation

which will give me the values of _.

From the fact that F0 does not depend on x we can conclude that the quanti-n

dF 0
ties which we called n. and which are equal to ---neither depend on x nor conse-

i dx. n
m

quently on Bn.

0 not only as in article 74, when all values BWe will therefore have ni=ni,

are zero, but even if Bn are not zero, provided that the other B are.
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If, therefore, we assume

_ _2 ..... _n-t =o,

we will still have

Az_------L'----T dR--°

Ix dwt

This permits us to differentiate this identity with respect to Bn and to write

Let us now calculate

d._:rt, d:R
_a_,, = X _"

It follows that

d._y_ and d_.r,,
i.t dw _ _, _"

'r dF
t_.y,, = - ,:° _t_ dt

where, since dF___0=0, we will have for _:0,
dxa

ayn _ fr dF, dR
-_- = ao _ a t = -- T -_ "

This identity holds provided that

_, = $, ..... $._, = o.

We can therefore differentiate it with respect to _k or to Bn, which gives us

d_ R dAy,l d2 Rd_,y,_ _ T = -- T • (3)

Concerning the quantities

it is sufficient for us to observe that they are divisible by B.

We have yet to examine the elements of the first row of our determinant and

those of the (n+l)-th column.

The elements of the first row are equal to
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They are all divisible by _, but I say that the n+l last elements, i.e.,

d_xl d_cl

and "J_-w_ '

2
are divisible by g . In fact, we have found for _=0

d&:rt =T dlR d'_:z't d'-R

Now_ by virtue of the definition of R, we have

dR dR dR

,q ___ +,q y_ +...+ _,,,_:_ =o,

or, because of relations (i) from article 75,

from which, (differentiating this identity)

dhxt d_x,

for _=0.
Q. E. D.

The elements of the (n+l)-th column are written

dAxl dAx_ dAa_,, day, dAy_ dAy_

_-j' "-X_,' "'" --X_ ' "-gff;_,+ ' - _'_' a_,, ' ""' d_,,

All these elements are divisible by _; but I say that the first n and the

last are divisible by W2 or, what goes back to the same thing, that

dAx_. day,,

d,_t ---- _-_ = o for _=0.

In fact, we have found

/213

and

d Axk d 2 R d _y_ d_ R

=--T_,

182



from which, by differentiation,

d 2R dt R
dwidwk _-"_ =°"

Q.E.D.

This granted, in our determinant G( I_ _ _) I divide each element by T; I
then divide :

the first row by _ lines 2_ 3, 4, ..., n, 2n by _; and

the (n+l)-th column by _ columns n, n+2, n+3, ..., 2n by _.

The determinant is finally divided by T2n_ n+2.

I then make _=0.

I observe that the following elements are zero:

Row to which the

element belongs

2 to n incl. and 2n

i

2 to n incl. and 2n

n+l to 2n-i incl.

Column to which the

element belongs

i to n-i incl.

n and n+2 to 2n incl.

n+l

n and n+2 to 2n incl.

and that the following elements are finite:

Power of

by which

the element

was divisible

2

2

Power of

by which
the element

was divided

n+l to 2n-i incl.

i

2 to n incl. and 2n

i

n+l to 2n-i incl.

i to n-i incl.

i to n-i incl.

n and n+2 to 2n incl.

n+l

n+l

power 0

2

power 0

(4a)
2

The only elements which are finite therefore belong to rows I and n+l to

2n-i incl. and to columns I to n-i incl. and n+l or to rows i to n incl. and

2n and to columns n and n+2 incl.

Our determinant therefore becomes equal to the product of two others which

I will call D I and D 2.

The determinant D I will be obtained by suppressing the rows
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I_ n --I.- I _, n. -.I- 2; ...p 2n+-- Is+

and the columns

lj 2j 3p ..._ _ --'I', _ -+"- I.

The determinant D 2 will be obtained by suppressing the rows

9, 3, _, ..., n, 2n,

12+ 71+-+-.- '2+ n --+- 3, .'.7 3tl.

Let us see how these determinants will depend on I"}. To do so I will remark
that

$
----lim_ (for _=0)

only enters into the terms of the principal diagonal; now the determinant D I con-

tains two of these terms one belonging to the column and to row n, the other be-

longing to the column and to row 2n.

The determinant D 2 also contains two of these terms_ one belonging to the

column and to row I, and the other belonging to the column and row n+l.

The result of this is that D I and D 2 are polynomials of the second degree in _.

Thus our equation in _ breaks down into two second-degree equations,

DI ----- o, D 2 _ o.

Let us first examine the equation DI=0. Z215

In order to form the determinant DI, we can apply the following rule:

Write the Hessian of R with respect to

dR
change the signs of the last row which contains the derivatives of d--_-; then add

n
d'R a_R

-_ to the two elements which are equal to dwnd_-------_and to --dwnd_-----_"

We obtain the same equation more simply (the first member being only changed

in sign) by taking the Hessian of R and adding -_ to one of the two elements which

_R

are equal to d_d_z and +_ to the other. Let us write the equation DI=O assuming
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n=4 in order to fix the ideas:

d_R

d:R

d_ dw_

d2R

d: R d_ R d: R
"dm,dw_ clm_dm_ dm_ d_

d 2R d_ R d_ R

dt_--_2 dm_ dm, d_: d_

d: R d _R d: R

dt R d: R d.. R d: R

-----0-

In this form one sees immediately what could have been anticipated: that this

equation in _ has its two roots equal and of opposite sign.

These two roots will be finite, if the Hessian of R with respect to

_ltt t_.l_ '1_'$ _ * • * v tlO'tt-I

is not zero.

They will be different from 0 if the Hessian of R with respect to

'l_t_ '1_3_ 'G)'_, _, • • • _ 'L_.,I-- D t_'rl:, _._

is not zero.

As for equation D2=O, it will have its two roots zero. In fact, we know that

there are always two characteristic zero exponents and, consequently, that two of

the values of _ are zero. We have just seen that the roots of DI=0 are not zero J216

in general; it is therefore necessary to admit that it is the roots of D2=O which

are always zero.

How would these results be modified, if condition (i) from article 75 were

not itself fulfilled?

In this case one would multiply (as we have done in article 74) the first line

0 and add to it the 2-nd, 3-rd, ..., n-th lines, multiplied, respectively, by
by nl,

0 0 0 0

n2, n3, ..., nn (I recall in addition that nn is zero); we would then multiply the

0
(n+l)-th column by nl, and add to it the n+2-th, n+3-th, ..., 2n-th coltumns, mul-

0 0 0 After this transformation, all elements
tiplied, respectively, by n2, n3, ..., nn-

of the determinant G(_ _ remain the same except those of the first row and of

the (n+l)-th column.

In addition, each element (those of the first row and of the (n+l)-th column

as well as the others) is divisible by the power of b indicated in the 3-rd column

in tables (4) and (4a).
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We will then divide each element by T and by the power of _ _ndicated in the
4-th column of the same tables.

When we make _=0, a certain number of elements will be zero and others will

remain finite thus conforming with tables (4) and (4a). Our determinant will

still be found equal to the product of the other two D I and D2, which will be
obtained as above.

All elements of these two determinants will have the same expression as in

the preceding case, except those of the first row and of the (n+l)-th column.

Now D I contains no element of this row and of this column.

Therefore D I has the same expression as in the preceding case and the same

conclusions hold.

The values of _. are finite if the Hessian of R with respect to _2' _' "'"

_n-i is not zero, and they are different from O, if the Hessian of R with respect

to m2, %' "'" _n' Bn is not zero.

Summarizing, if F 0 does not depend on x , if the bordered Hessian of F0 withn

respect to Xl, x2, ..._ Xn_ ! is not zero, if the Hessians of R with respect to

m2' _,''" Wn-l' and with respect to _2' _' "'" mn-l' _n' an are not zero, there

will be only two characteristic zero exponents.

Let us proceed to the case where F0 depends neither on Xn_ I

We would see by reasoning in the same manner that:

nor on x .
n

/217

If the bordered Hessian of F 0 with respect to Xl, x2, ..., Xn_ 2 is not zero,

if the Hessians of R with respect to_2,_3, ...,_,, _and with respect to _,_3_..._,__

_,-,, _n_ __, and_ are not zero j there will be only two zero exponents.

Application to the Problem of Three Bodies

78. Let us apply the preceding to the Problem of Three Bodies; we have seen

in article 15 and 16 how one can reduce the number of degrees of freedom to 3 in

the case of the plane problem and to 4 in the general case.

Let us therefore write the equations of motion in the form which we gave them
in these articles 15 and 16.

The two series of conjugate variables are then
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[3L, [3'L', H,

l, l', h

in the case of the plane problem_ and

I_L, yL', _r, _.'r',
l, 1', g, g'

in the general case. We have in addition

Fo = AL -t + A'L'-t,

A and A' being constant coefficients.

es not depend on H in the case of the plane prob-We see therefore that F^ do
nor on F and on F' in _he general case.lem,

In the first place, the bordered Hessian of F 0 with respect to _L and _'L'

is equal to

BL-_L'-6 + B'L-6 L'-_,

B and B' being constant coefficients. The bordered Hessian is therefore not zero.

The Hessians of R will not always be zero in general, as one can be assured L218

of from some examples; in addition, we will return to this point in greater detail

in the following chapter.

Therefore the periodic solutions of the Problem of Three Bodies have two char-

acteristic zero exponents, but they have only two.

Complete Calculation of Characteristic Exponents

79. Let us again take equations (I) from article 74 by making n=3 in order

to fix the ideas:

a_, av aye_ av (i=,,_,3). (1)
d'---t'='_yt ) dt dzt

Let us assume that one has found a periodic solution of these equations

_l = e?i(t), yt-_ _i(t)

and let us propose to determine the characteristic exponents of this solution.

To do so, we will set

zl = ,_i(t) + _i, yl = +,(t) + _l,

then we will form the equations of variation (i), which we will write
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dt - Z_._" d:F

an_ = __ "d:v d',V
"-_ z-'Jkdxidxk _--ZI,. dxidy k 7,1,

(i,k=,,.,,3), (2)

and we will attempt to integrate these equations by setting

_t _" eatSi, r_1 -_ eatTi, ( 3 )

S.l and T.l being periodic functions of t. We know that there exist in general six

particular solutions of this form (linear equations (2) being of the sixth order).

But it is important to observe that, in the particular case which concerns us,

there are only four particular solutions which retain this form, because two of

the characteristic solutions are zero, and there are consequently two particular

solutions in a degenerate form. /219

This granted, let us _=0; then F reduces to F 0 and depends only
on xO, xO_ _. first assume

Then equations (2) reduce to

The coefficients of _k in the second equation (2') are constants.

We will take as solutions of equations (2')

_, = h = h = o, ,,, = _, ,,, -_ ,,],

0 o 0

111' I]2' 113 being three integration constants.

_,a--- T,_,

This solution is not the most general, because it contains only three ar-

bitrary constants_ but it is the most general among those which we can reduce to

form (3). We thus see that, for _=O, the six characteristic exponents are zero.

Let us no longer assume now that _ is zero. We shall now attempt to develop

S.l and Ti, not as an increasing power series in _, but in powers of _ by

writing

" = =,V7+ =,l* + _, ,_ .....

s, = s? + s,' W+s:_ + s,_:_¢7+ ....

T_-= T_+ T,1V/_+ T._ + T_ _ _+ ....

I first propose to establish that this development is possible.

We saw first in article 74 that the characteristic exponents _ can be de-

veloped as an increasing power series in _.
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Let us now demonstrate that S. and T. can also be developed in powers of

S. and T. are given to us, in fact, by the following equations:
i I

dSi d _F _ d -_FS,t-,__dt +_Si= _ (2")

dTt+ _ c/2F +_ d _-F
--at _ ctx_ dyk

Let _i be the initial value of S and _' those of Ti; the values of S and of T.i i i l
/220

for an arbitrary value of t may, according to article 27, develop in powers of b,

_' _i and _. In addition, because of the linear form of the equations_ these

values will be linear and homogeneous functions of _i and _'i"

In order to use notations analogous to those from article 37, let _i+_i be

the value of Sl and _i _i that of T.I for t=T. The condition for the solution to

be periodic is that we have

'h -" '14= o.

, ! o

Values _i and _i are linear functions of _i and Bi, these equations are therefore

linear with respect to these quantities. In general, these equations admit no other

solution than

1_,= 13;-=o,

such that (2") have no other periodic solution than

$1= T, = o.

However, we know that, if one chooses _ so as to satisfy G(_, b)=O, equations (2")

admit periodic solutions other than S.=T.=O. Consequently, the determinant of
I i

the linear equations _i=_=O is zero. We will therefore be able to extract from

these equations the relations

in the form of power series developed in _ and b.

As _i remains arbitrary, we will agree to take _=i such that the initial
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value of T I is equal to i.

in _ and _; but S. and T.
i i

!

Values _i and _i are then developed as a power series

are, as we have seen_ developable as power series in c_,

_i and _' and, on the other hand, _ can be developed as power series in _.i

Therefore S. and T. will be developable as power series in f_.
I i

Q.E.D.

We will have in particular

Tt= Tt°+ TJ _/-_÷ T_ + ....

!

Since, according to our hypothesis, _i' which is the ini%ial value of T I, must be

equal to 1, whatever _ may be, we will have for t=O

T_ ----t, o = T 1= T_ ..... T? .....

Having thus demonstrated the existence of our series, we are going to seek to de-

termine its coefficients.

We have

and

= _,(s_ + s,'.¢_ +...),

as,.o dSl
dfi-2='e_' --dT- + ¢'-d -2/- +:'"
dt

+,,s_ +_¢_s,'+..

a'U dr,.'
d"---!= e_" _ + _ -_- +""
dt

_t = eat(T_ + T_ ¢r_ +...),

(4)

We will develop, on the other hand, the second derivatives of F which enter

as coefficients in equations (2), writing

_F

d.r,a.i = A,**+vtA_x..+ vttAtt,-t- ....

dlF
= B_,-+.v,Bh.+ _' B,'k+

ay, ay,
anF

dz_ = ch.+ _ch + t_'ch. + ....

anF
= O_t,+ FtD_..+ p.tD_/, + ....

dxtdyk

(_)
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These developments contain only integral powers of _ and do not possess,

as developments (4), terms dependent on _b.

We will observe that J222

( 6)

We will substitute in equations (2) the values (4) and (5) in place of _, _ their

derivatives and second derivatives of F. In expressions (4) I assume that _ is

developed in powers of _, except when this quantity _ enters into an exponential

factor ecf¢•

We will then identify by equating the like powers of _ and thus obtain a

series of equations which permit determining successively

at, a,, a_, ..., S o, S_ ..... T O, T_ .....

I will only write the first of these equations_ obtained by equating succes-

sively the completely known terms,the terms in _, the terms in _, .... In addition

I cause the factor ec_, which is found everywhere, to vanish.

Let us first equate the terms in _>; it follows that

dSl o _. o , o ,
dt ÷a_S_ = _,_.AikSk+ ZkBikT/,,,

d'rl
-- _,t-Cix S_..+ -k Di_.-T,_..dt +=lT°----v o t v o 1

(7)

Let us equate the terms in >; it follows that

dS,_ , o
dt +=tSi --,--=2Si

0 vBit..T_t.= Zk(A°4 S_-+ AikSk -+- + B_.T_.)

(8)

2
dT i

in addition to three analogous equations giving d-7"

If one now takes account of relations (6), equations (7) become

dSl d'r) + _,_,_ o ,
dt = o, dt

1 1 3-

The first of these equations shows that SI, S 2 and 83 are constants. As for

the second, it shows that x is a constant; but as must be a periodic func- /223
i

dt

t_on, this constant must be zero, such that one has
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•,,ff = c,', sl + c,', s; + c,_°s_,,

which establishes three relations among the three constants 1]jI,_ the three

stants SI and the unknown quantity _i"
I

For its part, equation (8) will be written

(9)

con-

-- -kB,k dk"dt + atS't = v t'r°

The B2ik are periodic functions of t; let us develop them according to the formula

of Fourier and let bik be the completely known term of B2ik .

It will follow that

or, considering equations (9),

, s,' = _b,_(c_, st + c,.,s,' , + dl._s,,). (lO)II I

h=!

Setting i=l, 2 and 3 in this equation (i0), we will have three linear and homo-

geneous relations among the three constants S_. Eliminating these three constants,
i

2
we will then have an equation of the third degree which will determine _i"

If, for brevity, we set

e,k= hi, Oh.+ b,,C _.+ b,3 Ch,

the equation due to this elimination will be written

It can also be written

e,,- =! e,, e,_ [

ell _ll--a] ell ] =0.
eli ell ea3--_

--"L o o C?t C?, C,°3
o --_l o el, Ch C°,

o o -- ,,, C,°, COt C,%

b.tl b,, b,, --=, o oby bt, b.,, o --"t o

b,l ha, b,3 o o -- a,

-----0.

(ll)
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The determination of _i is the only part of the calculation which presents some /224
difficulty.

The equations analogous to (7) and (8), formed by equating in equations (2)

the coefficients of the like powers of _. then permits without difficulty the
Sm and Tm. We can therefore state the following result:

determination of _k' i l

The characteristic exponents _ can be developed as an increasing power series

of

Therefore, concentrating all our attention on the determination of _i' we

are going to study especially equation (ii). We must first attempt to determine

the quantities CO andik bik"

We obviously have

C_I=
d i F o

and

d _F,
=

_.ctydy _

or

B_t. ---- -- E A mi mk sin _, (w = m,y_ + m2y_ + m,y_ + h)

and

_ik ----- -- S ._k fll_ ITl k SiN a;.

The summation represented by the sign Z extends to all terms, whatever the inte-

gral values taken on by ml, m2 and m3. The summation represented by the sign S

extends only to terms such as

nl nZl-I- tiZ/n | -'F F/3m 3 _---O.

Under the sign S we have consequently

This permits us to write

bik _ --
d'R

d_s i din,
(for i and K=2 or 3).

indices i and k are equal to i, bik will be defined by the _225If two of theone or

relation
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nlbit+ ntbi 1_ n_bi3_o.

By means of this last relation_ we are going to transform equation (ii) so

as to place in evidence the existence of two zero roots and to reduce the equation

to the fourth degree.

I find, in fact, by a simple transformation of the determinant and by dividing

2
by _i' that

n t n| /?,_ 0 o o

o -- _t o bt_ hi3 o

o o -- at b_.t b_a o

C_i C°_ C°_ -- fit o na

C_, C_, CO, o --_, n,

C?t C_, C,°, o o n_

_0.

In the particular case where we have only 2 degrees of freedom, this equation is

written

n i n 1 o o

d _R
0 --_! _ o

C_, Cil o n,

--=o

or

,',!=I= _ (_Tc°,- =_, _,c_, + _i c',,).

0 0
_0 6 _ _0

The expression n,Ctt--2n, n2Ct_t-+-n.;C_ depends only on x I and x2 or, if one wishes,

on n I and n2. When we are given the two numbers nI and n2, which must be com_r_en-

2 0 0 _ 0
surabl% we may regard n,C, a-2n,n_C,,+n_C,, as given constant. Then the sign of

2 --._i depends only on that of d2R

When we are given nI and n2, we form the equation

dR

d_,--_=o. (12)

We have seen in article 42 a periodic solution that corresponds to each root of

this equation. /226

Let us consider the general case where equation (12) has only simple roots;
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each of these roots then corresponds to a maximum or minimum of R. However_ func-

tion R, being periodic, presents in each period at least one maximum and one min-

imum and precisely as many maxima as minima.

Now for values of _2 corresponding to a minimum, d2R is positive; for values

corresponding to a maximum, this derivative is negative.

Therefore equation (12) will have precisely as many roots for which this deriv-

ative will be positive as roots for which this derivative will be negative, and

consequently as many roots for which _21 will be positive as roots for which _i will

be negative.

This is the same as saying that there will be precisely as many stable periodic

solutions as unstable solutions, giving this term the same sense as in article 59.

Thus, to each system of values of nI and n 2 there will correspond at least

one stable periodic solution and one unstable periodic solution and precisely as

many stable solutions as unstable solutions, provided _ is sufficiently small.

Here I _ill not examine how these results could be extended in the case where

equation (12) would have multiple roots.

The calculation is continued in the following manner.

Let us imagine that we have completely determined the quantities

and the functions

s,', sl ..... s?,

T,', T_, ..., T?-'

and that we know the functions Sm+l and T m to within a constant.
i i

that we propose then to calculate _m+l' to determine functions sm+ll"and T TMI and

then to determine functions Sm+2. and Tm_.ito within a constant.
I i

Equating the like powers of _ in equations (4), we obtain equations of

the following form, analogous to equations (7) and (8),

dTr'+' ,o,, ,. o_dt +Z C S --_IT__a,n+,T,- known quantit (i=i,%3).
I

I dS_+ 2 , _ _+, ,_-- d---7-+ZkBi*Tk--a,Si --a,n+,S,-known quantity/

i

The two members of these equations (12) are periodic functions of t. Let us

equate the mean value of these two members. If we designate by [U] the mean

Let us assume

(15)

Z227
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value of an arbitrary periodic function Uand we observe that, if U is periodic,
we have

m [Tk] andm bein 6 known %o within a constant_ T k-if we recall that_ Tk

[B_.(T_'-- [T['])]

are known quantities, we will obtain the following equations:

I 0 p_ + l _zl o |Z,Cik[$_. ]--:_[T, ]--:....,Ti= known quantit_ { (i:i,2,3). (14)
•kS+,[T_']--=,[ST+']--=....iS,_ known quantity

_-m+ i

These equations (14) will serve to calculate _m+l' [Tm] and tz i j and consequently

m sm+lto achieve the determination of the functions T I and . which are still knownI

only to within a constant.

If we add equations (14) after having multiplied them, respectively, by

sl, s,, s,, TO, T,0,T_,

we find

2zS) T_=,.+,: known quantity,

which determines _m+l"

If in equations (14) we replace _m+l by the value thus found, we have, in

order to determine the six unknowns IT ] and _ i 3' six linear equations, of which

only five are independent.

This granted, we will determine IT ] by the condition that [ TI] be zero for

t=O, in conformity with the hypothesis made above, and the five equations (14)

remaining independent will permit calculating the five other unknowns.

Equations (15) will then permit us to calculate dTT+' dS_+'
d---7--and T and conse-

quently to determine the functions T m+l. and Sm+2. to within a constant: and so
I i =

80.

forth.

Degenerate Solutions

Let us return to equations (i) from the preceding article
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dxt dF dy_ dF
-- (i---- t, _, 3).

dt d yi dt dxi
(1)

We have assumed that there existed a periodic solution of period T

_=$,(t), y_=+,(t);

then setting

we have formed the equations of variation

d_i d _-F d_ F )_w=- _+._,_-+_+. _,.,,,_,

d"_ = dx, dx_ _x'--i--_dxidyj, 7't"

(2)

These equations, havinc generally four characteristic

will admit four particular solutions of the form

_t --'--eZLtSi, _l = e_t Ti,

exponents different from O,

S. and T. being periodic. We have learned to form these integrals.
i I

However, equations (2) will have in addition two characteristic zero exponents:

they will therefore admit two particular solutions of the form

_,= s', _,= T,, 1 (5)_= S_+tS_, ,_,.-- T_ + tT_,

S"i, Ti' S_ T*i being periodic of the same period as gi' _, Si and Ti.

How must one proceed to form these solutions (3)?

We have seen in article 42 that equations (i) admit a periodic solution

of period

which reduces to

=_ = ?d t, _t, ,.), y = +i( t, i_, _ )

T

l-k-i

_r:= ,_,.(t), y,. = +,.(t)

for g=O.

]229

(4)
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The functions _i and _i can be developed in increasing powers of _.

Let us now set

t = -- .u = tO + _).
! -_ _ whence

If we substitute this value in place of t in equations (4), it will follow that

xt= _¢(u,_,i). y,.= O,(u,_,E).

The functions 0. and E,. will still be developable in powers of _ and ¢7 but they
i i

will be periodic in U and the period will be constant and equal to T; they will

2nu
therefore be developable in terms of the sine and cosine of the multiples of- T --

If h is an arbitrary constant,

ari=e?i(t-l-h , _t, _), )'i=._,(t4-h, _, ¢)

is still a solution of equations (i), because time does not enter explicitly into

these equations. This solution contains two arbitrary constants h and ¢.

Article 54 furnishes us the means of deducing two solutions of the equations

of variation (2).

These solutions are written

d_i d+t
_ = _K ' "_ = d--_

/230

and

t ='-a£ ' _ = -dg"

After differentiation it is necessary to make h=_=O.

Now it follows that

from which

and for _0

_?i(t, _t, _) = 0 i [t(I + I_), _t, z],

_,(t, _, t)= Oi[t(l+_), [z, ¢],

doi dot dOi du dOi
-d-_= -_t = _-d _7 = -_-_u(' + _),

d_,l dd_i dO,. du dOi (i -+- ¢),d--h =-dr-- du dt =
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d_i dOi d@i dOi
-_- = -_ ' aa - -_ "

On the other hand,

d_?i_ d_i du d{_i dOi dOi
ca = d-_ _ + _ = t-_ +-_ ,

d'_l _ dOi du dOi dSi dog

d'- du -_7 + _ = t _ + d--Zj

or, for _=O,

d_t t dr'i d_i d'_t d+i dOi
d--_-- = --_ + -_-z ' -__ = t -_- + --_-,

The sought solutions of equations (2) are therefore

do i ,, ddl t
__= S; = --di ' _ _= T _= d--7

and

_i = tS_+ S_', r,l= tT_+ T_

with

d_i T_ = dots_ = -37' d--7"

rl rl
I say that the functions S i, Ti, S_, T'a_ are periodic in t of period T. In fact,

8. and ®. are periodic of period T in u ; this period being independent
i I

the derivatives

dBt dot d_t dot
-du ' -d-d' -dT ' d-T

of_,

(5)

will be equally periodic in u. However, fore=O, u=t; if therefore after differ-

entiation we make ¢=O, these four derivatives (5), i.e , the four functions S"• i'

Ti," Si,* Ti,* will be periodic in t.
Q.E.D.

These four functions will be, as 8. and ®. whose derivatives they are, de-
I I

velopable in increasing and positive powers of b (I recall that S.l and T.l in the

preceding article were developable in powers not of b, but of fb).

For _:O, _ reduces to a constant x? dgi =S['l; therefore -- vanishes.
dt i
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Therefore S[' is divisible by _, as in the preceding article S. was divisible by

_. 1 1

On the contrary, S.* is not divisible by _.
l

In a memoir I published in Acta mathematica, Vol. Xlil, p. 157, I was led

to consider equations analogous to equations (2) and two particular solutions of

these equations

_z= 5_, ,.i= T;,

_;= 5:'+ _tS_, _,_= TT+ _tT_.

I call _ one of the characteristic exponents, such that _ can be developed in odd

powers of _, and that _ is itself developable in powers of a2 and is divisible by

I assume that one replaces _ by this value, such that all our functions are

found developed in powers of _. I state then that S" and S"' are divisible by _.
Tf

In fact, Si, as we have just seen, is divisible by _land _ b_ Q2.

On the other hand, we have manifestly

ST= aST,

since it is necessary to multiply by _ the solution which I have just studied /232

_t= ST+ tS,,

so as to obtain the solution considered in Acta mathematica

_j = S,+ _,t S;..

I thought it necessary to make this remark because an inattentive reader might not

take account of this factor _ and consequently believe there to be a contradiction

between the result stated in Acta and those which I have just demonstrated.
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CHAPTER5. NON-EXISTENCEOFUNIFORMINTEGRALS

81. Let us return to our canonical equations

dx,. dF dy+ _ dF
-_ = _,, -_ - - _,

F : Fo+ _FI ÷ I_'F_-+-...,

(1)

/233

I first assume that FO, which does not depend on Yi' depends on n variables

x. and that its Hessian with respect to these n variables is not zero.
I

I propose to demonstrate that, except in certain exceptional cases which we

will study later, equations (i) admit no other analytic and uniform integral than

the integral F=const.

This is what I mean to say:

Let @ be an analytic and uniform function of values s, y, and b, which must

in addition be periodic with respect to y.

I am not required to assume that this function is analytic and uniform for

all values of s_ y and b.

I assume only that this function is analytic and uniform for all real values

of y, for sufficiently small values of b and for the systems of values of x be-

longing to a certain domain D; the domain D can in addition be arbitrary and as

small as desired. Under these conditions, the function @ can be developed in

powers of _ and I may write

el,= +o -_-l_+I -F-_ cl'_"+-. •.,

@0' @i' %2' ... being unfform with respect to x and y and periodic with respect

to y.

I say that a function _ in this form cannot be an integral of equations (i). /234

The necessary and sufficient condition for a function _ to be an integral is

written, resuming the notation of article 3,

IF, _,]= o,

or, replacing F and _ by their developments,

o = [Fo,'I'o]+ _([F,,+o] + [Fo,4hi)
+ _'([F,,+o]+ [F,,4, ]+ [Fo,+,]) + ....

We therefore will have separately the following equations, which I will use later
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and

[ro,*o]:o (2)

It,, [ro, o.

I say that I may always assume that _0 is not a function of FO.

In fact, let us assume that we have

• o = +(Fo).

I say that function @ generally will be a uniform function, when the variables
x remain in the domain D.

We have in fact

Fo= Fo(x,, xi ..... x,,).

We will be able to solve this equation with respect to x I and write

xl= O(Fo, _2, -.., x_),

dF o
and O will be a uniform function unless -- vanishes within domain D.

dx I

Replacing xI by its value e in

\YJ, Y,, .,y_/'

it follows that

\Y,, y,, yn ----_ \y,, yS, ..., y,_

@0 is a uniform function of x and y; if we here replace x I by the uniform func-

tion e, we will obtain a uniform function @ of F0, of x2, ..., Xn and of y, but

by hypothesis this function @=_ is a uniform function of F O.

Therefore, _=@ is a uniform function of FO.

dF 0

This result holds provided _i does not vanish in domain D; this will hold

dF 0

equally well if any one of the derivatives _ does not vanish in domain D.

This granted, if _ is a uniform integral, the same will be true for

/235
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@-@(F) can be developed in powers of _ and in addition is divisible by _ since

¢0-_(_) is zero. Let us therefore set

_' will be an analytic and uniform integral and it will follow that

In general, @0 will not be a function of FO; if this were to happen, we would re-

peat the previous operation.

I say that in repeating this operation, we will in the end arrive at an inte-

gral which will not reduce to a function of F 0 for _=0.

At least this is true whenever @ is not a function of F, in which case the

two integrals F and @ would not be distinct.

In fact, let J be the Jacobian or functional determinant of _ and of F with

respect to both variables x and y. I may assume that this Jacobian is not identi-

cally zero, because if all Jacobians were zero, @ would be a function of F, which

we do not assume.

J will be manifestly developable in powers of _. In addition, J will vanish

with _, because @0 is a function of FO. Therefore J will be divisible by a cer-

tain power of _, for example, by _P.

Now let J' be the functional determinant or Jacobian of @' and of F; we will

have

J = [_J',

1236

such that J' will only be divisible by _p-l.

Thus, after p operations at most, we will arrive at a Jacobian which will no

longer vanish with _ and which will consequently correspond to an integral which

will not reduce to a function of F 0 for _=0.

Consequently, if there exists an analytic and uniform integral distinct from

F, but such that @0 is a function of FO, we will always be able to find from it

another of the same form and which will not reduce to a function of F0 for _=0.

We therefore always have the right to assume that @0 is not a function of

F 0 •
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82. i now say that @0 cannot depend on y.

If, in fact, _0 depends on y, it will be a periodic function of these var-

iables, such that we will be able to write

4% = XAe ¢ al,,,y,*m_',_-...+,,..,-._= v _,_

m. being positive or negative integers, A being functions of x. and the notation
i i

representing for brevity the imaginary exponential which multiplies A.

since F
0

This granted, we have

IF0, .0]=V dF° d_._,,
dx_ dyi

dF o
does not depend on y and values -- are zero.

dY i

On the other hand,

d4'o
doFi = v _/---_miA,.

so that equation (2) may be written

dF. dFo dFo '_C:-iz A ,,,, yg_,+ ,,,, 7G_+...+ ,,,, 7G_/ _= o,

and, as this must be an identity, for all systems of integral values of m. we will

have l ]237

dFo
A Z ml -d--xx/ =o,

such that we must have identically oither

A=o, (4)

or

dFo
__,,,,_, = o. (5)

From identity (5) we may by differentiation deduce

I R

2nl_. d 2Fodxi_ =° (K =: I, 2, ... n).

Now this can take place in only two manners:
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Either

nil _ nz! _ . • • _ lllrl ---_ 09

or the Hessian of F0 is zero.

Now we have assumed at the beginning that the Hessian was not zero.

Therefore A must be identically zero, except for the term where all m. are
I

zero.

This is the same as saying that _0 reduces to a single term which does not

depend on y. Q.E.D.

Let us now examine equation (3)- As F0 and @0 do not depend on y, this

equation can be written

_'_ d@o dF, +Z dFo dclh

On the other hand, F I and @i are periodic with respect to y and consequently can

be developed as exponentials of the form

Cf'_(mDt-.vralyl¢-...+n1_'¢=1 t

m. being positive of negative integers.
i

For brevity I wil_as above, designate this exponential by _ and t will write 2_...8

F,= ZB_, 4,, = Y_C_,

B and the C being coefficients depending only on x.

We will then have

dcl,_ctF, m,:, - ¢----,ZCm,',,
ay--U= ay _

such that equation (3), divided by j-l, will be written

-- Z B _(Zi mi dcl,o dFo

Since this equation is an identity, for all systems of integral values of m i we

must have

d°v' = CZmi dFo
B Z mi _ -_U "

(6)
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Relation (6) must hold for all values of x. Let us then give x values
such that

dFv

=°: (7)

the second member of (6) vanishes. Whenever values x satisfy equation (7), we

must therefore have either

B=o (8)

or

d_o

V-.m , -dxL =o. (9)

Function F, is one of the given conditions of the problem and the case conse-

quently will be±the same for coefficient B. Therefore it is easy to recognize if

equality (7) implies equality (8). In general, we will state that this is not

true and we must conclude that equality (9) is a necessary consequence of equality

(7).

Now let PI' P2' "'" Pn be a certain number of integers. Let us consider

that we give x values such that /239

dFo dFo dFo

•. such
We will be able to find an infinity of systems of integers, ml, m2, ., mn,
that

,"_l_l + mlpl +. •.+ ,"tl', Jg, = O.

For each of these systems of integers_ we must have

and, cons equently,

dFo

r-ml_ _ =o

d'Po

Z m i -_x i ==o.

Comparison of these two equations shows that we must have

dFo dFo dFo

dx, dx, dx,,

-a7, a%-:

i.e., that the Jacobian of FO and of #0 with respect to two arbitrary components

of the vector x must be zero.
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This must hold true for all values of x which satisfy relations of form
dF0

(10), i.e., for all values such that _. be commensurableamongthemselves. In
1

an arbitrary domain, however small it may be, there is therefore an infinity

of systems of values x for which this Jacobian vanishes_ and as this Jacobian is

a continuous function, it must vanish identically.

To say that all Jacobians of F0 and of 40 are zero is therefore to say that

@0 is a function of F O. Now this is contrary to the hypothesis which we have

assumed at the end of the preceding article.

We must therefore conclude that equations (i) admit no other uniform inte-

gral than F=C.
Q.E.D.

Case Where the B Vanish

83. In the preceding demonstration we assumed that coefficients B were not

zero. If one or several of these coefficients vanished (and especially if in-

finitely many of them vanished), we would have to examine this reasoning.

To make possible the statement of the consequence to which I will be led, I

will be forced to introduce a new terminology.

To each system of indices ml, m 2, ..., m n (where m i are integers) there cor-

responds a coefficient B. I will say that this coefficient is secular when xi

take on values such that

WF0
=o. (7)

_4o

The following will justify this definition.

When, in the calculation of perturbations, we assume that the ratios of the

mean motions .are commensurable, some of the terms of the perturbing function cease

being periodic, and we can then say that they become secular; what happens here

is completely analogous.

! I

i will say that two systems of indices (ml, m2, ..., mn) and (ml, m 2, ...,

m'n) belong to the same class when we have

mL m_ f_n

_ = _-X,......_

and that two coefficients B belong to the same class when they correspond to two

systems of indices belonging to the same class.

In order to demonstrate the theorem of the preceding article, we have assumed
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that none of the coefficients B vanishes in becoming secular.

In order for the result to be true, it is sufficient that in esch of the
classes there be at least one coefficient B which does not vanish in becomingsecular.

Let us assumein fact that the coefficient B which corresponds to the sys-
tem (ml, m2, ..., mn) vanishes, but that the coefficient B' which corresponds to

?

to the system (ml, m_, ..., m n) does not vanish.

If we give x values such that

/241

we will have equally

and consequently

d_, d_ o
B_m_ _ =o, B'_m[.a--_.=o.

From the first of these equalities we cannot deduce

_ mi _-_ L _---O

because B is zero; but, as B' is not zero, the second equality gives us

•Xm_ dCb°

and, cons equently,

The rest of the reasoning is carried out as in the preceding article.

Before continuing, let us first consider the particular case where there are
only two degrees of freedom.

There will then be only two indices m I and m 2 and one class will be entirely

defined by the ratio of these two indices. Let K be an arbitrary commensurable

m I
number; let C be the class of indices where--=X. For brevity I will say that

m2
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this class C belongs to domain D, or is in this domain if we can give to x. a1

_ystem of values belonging to this domain, and such that

dF, diP,

I will say that a class is singular when all coefficients of this class van- J242

ish in becoming secular, and that it is ordinary in the opposite case.

I say that the theorem will still be true if we assume that, in any domain

6 being part of D we can find an infinity of ordinary classes.

Let there be, in fact, an arbitrary system of values of xI and x2, such that

we have at this point

d'Fo dFo

Let us assume that _ is commensurable and that the class which corresponds to this

value of X is ordinary; the reasoning of the preceding article can then be applied

to this system of values and one must conclude that, for these values of xI and of

x2, the Jacobian of F0 and of @0 with respect to xI and to x2 vanishes.

However, by h_othesis there exists, in any domain 6 so small that it is part of

D, an infinity of such systems of values of xi and of x2. Consequently our Jacobian

must vanish at all points of D which shows that @0 is a function of F O. From this

we would conclude, as in the preceding article, that there exists no uniform inte-

gral distinct from F.

The case would not be the same if we could find a domain D of which all the

classes are singular.

We could then ask if there does not exist an integral which remains uniform

not for all values of x_ but only for those values which do not leave domain D.

We would see, in general, that while this would not be true; it would be suf-

ficient_ in order to be certain of it, to consider in the equation

-[F,_]=o,

not any longer only the term independent of _ and the terms in _ but the term in

2
and the following terms.

I do not insist, this has no interest, for I do not believe that in any

problem of Dynamics occurring naturally it happens that all classes of a domain

D are singular without all coefficients B vanishing in becoming secular.

Let us now proceed to the case where there are more than 2 degrees of freedom.
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The results will be analogous, although their statement will be more complicated. J24_ •

Let

be n arbitrary integral numbers. Let us consider all systems of indices ml, m2,
..., m which satisfy the condition

n

mIpl + m_p_ +... + rnnpn= o.

I will say that all corresponding coefficients belong to the same family.

Let there be q classes defined by the following systems of indices

ml, 1_ lnl,l_ • • .D ran,!

nll,l_ _'TilJ I_ " " *1 "_l,'l_!

u: U I I 1 i v i i I 191] u I 0 u

17llDql n'll_ql " " " I IFn'n'lq.

If one cannot find q integers

such that one has

_---q

ainlk.z" _ 0 (k=l, :_ ..., n),

I will say that these 2 classes are independent.

I will say that a family is ordinary, if we can find in it n-i independent

and ordinary classes, and that it is singular in the opposite case. It will be

singular of the first order, if we can find in it n_ independent classes, ordi-

nary and singular classes of the q-th order, if we can find in it n-q-! inde-

pendent and ordinary classes and no more.

I will say that a family defined by the integers (PI' P2' o..,pn ) belongs to

a domain D, if there exist in this domain values of x such that

dFe dFo d_' o

This granted, I say that if we can find in all domains 6 which are part of

D an infinity of ordinary families, there can exist no uniform distinct integral
of F.

The reasoning of the preceding article is_ in fact, applicable to all sys-

tems of values of x which correspond to an ordinary family.

J244
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The Jacobians of F0 and _0' with respect to two arbitraries of variables

x, must therefore vanish an infinity of times in all domains 6 that are part of
D, which can occur only if they are identically zero.

I now say that if we can find in any domain 6 which is part of D an infinity
of singular classes of the q-th order, the numberof distinct uniform integrals
which equations (i) can have is at most equal to q+! (including the integral F).

Let us, in fact, assumethat there are q+2 distinct integrals; let

F, @t @2 ..._ @q+!

be these integrals and let us assume that for _=0 they reduce to

Fo, ¢_, ¢_..... ¢_+'. (ii)

Let there be a system of values of x corresponding to an irregular family

of the q-th order. Let us set

n--q--I=p.

There will exist in this family p ordinary classes. Let

ml,k,m_,,....,_.,k (k = l,_....,P)

be the systems of indices corresponding to these classes.

We will have for the values of x under consideration

i-----I i=l

_/T/.i,/.. '_t_" 0 = Z Dll,k _0_

I n

(k--- l, _,.... p, h----l, :l, ..., q+O"

We will deduce from this that the Jacobians of the q+2 functions (ii) with

respect to q+2 arbitrary coordinates of x must vanish for the considered values

of x.

And since this must take place an infinity of times in each domain 6_ we will 24__

conclude from it that these Jacobians vanish identically and consequently that

our q+2 integrals cannot be distinct.

These considerations present no additional practical interest, and I have

presented them here only to be complete and rigorous. We can obviously construct

problems artificially where these various circumstances are encountered; but in

problems of Dynamics occurring naturally it will always occur either that all
classes will be singular_ or that they all will be ordinary, with the exception

of a finite number of them.
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CaseWhere the Hessian is Zero

8h. Let us nowproceed to the case where F0 does not depend allon vari-

ables Xl, x2, ..., x .n

I will assume that F 0 depends on x I and x2 only, and that its Hessian with

respect to these two variables is not zero.

In order to note well the difference between these two variables xI and x2

and their conjugates Yl and Y2 on one hand, and the other variables x and y on the

other hand, I will agree to designate

.T:r _ .7"_7 " • ,t "_'n,l

Yz, T', "", Y"

by the notation

Ull _I_ • • ", Un-|"

We will first observe that the conclusions of article 81 obtain and, if there

exists a uniform integral @ distinct from F_ it is always permissible to assume

that _0 is not a function of F
0"

This granted_ we must first have

dFo d_o c/Fo dc_o
[Fo, 4)o] = dx, dy, + dr, dy, = o.

Let us set

we can write

._ = e_/-----I(m,y,+t.,y)l

4,o= _-A_

values A being coefficients depending on Xl, x2_ z and _. It then follows that

¢'-----i_-A { (m, dFo dFo

This relation must be an identity and_ on the other hand_ the Hessian of F0
being not zero, we cannot have identically

_0 S0

ml _l -+-. m= _-_-;x1 =o,

unless m I and m 2 are both zero.
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From this wewould conclude, as in article 82, that _0 depends neither on

Yl nor on Y2"
If we then write equation (3), wewill have

d_o dFt d_o dFI dFo d4't

avo a+, +.Of dr, a+o av, a+o_
+ ax--_,a.r--S z.,\ d._ d,_ d,_ _ / = o.

Let us also set

F, = ZB_, @i = ZC_.

When it is necessary to indicate the indices, I will write

Fi _ R _¢_-llmayt+m,Y,l

It will follow that

.dB d4'o'_ o
dui d_zl/= "

This relation must be an identity; we can therefore equate to 0 the coefficient of

an arbitrary one of exponentials _. We will in addition give x values such that

dF, dF,
m,_-; +.,, T_, =o, (12)

so as to make the terms which depend on C vanish.

It will follow that
Z247

( d,l,o d,}o'_ _(aB a,l,,-- B mj -_t + m, dx, / + _ dui

We will consider two coefficients Bml, m2, Bmi ' mS

such that

ml m'2-- mlm't = o,

dB d4_o'_
a,,, -_, /=o. (15)

as belonging to the same class

and for brevity I will say that the coefficient B
m I, m 2

m I
belongs to the class--.

m2

It follows from this definition that the coefficient B0, 0 belongs to all classes

at the same time.

According to the preceding, if we give x values which satisfy relation (12),

relation (13) must hold for the coefficients of B of class m_!l.

m2
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Then let p and q be the two first integers among those, such that

ml p
mt q

Let us set

and

Dk = Bxp,),q ,;L,
dcl'o d_o

If we give x values such that

dF0 + dF0
P dx, 9 _ = o,

(12a)

we must have

( 13 a)

and this for all integral values of K, positive, negative or zero.

This can only take place in two ways:

(i) Either we have

d_o d@o
H =o, _ :o, _ =o (i:l, _, ..., n--2),

from which /248

, all% d'l'o dF, d'l'o
dxl dxl dxs d.rt

_0.

We would deduce from this, by reasoning quite similar to that of article 82, that

_0 is a function of FO, which is contrary to the hypothesis made at the beginning.

(2) Or, on the other hand, if the Jacobian of 2n-3 arbitrary choices of func-

tion Dk with respect to the 2n-3 variables _; z. and u. is zero.
i 1

From this we would conclude that, if we give xI and x2 constant values sat-

isfying condition (12a), a relation will result between 2n-3 arbitrary choices of

functions D_ such that all these functions can be expressed by means of 2n-4

from among them.

We can state this result in still another way.
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Let us consider the following expressions

(14)
B_pDqB;_,rA"q"

if we assume that we give x I and x 2 constant values satisfying equation (12a),

these expressions (14) depend on 2n-4 variables only, namely z.l and ui.

If there exists a uniform integral, all these expressions are functions of

2n-5 from among them; or, in other words, we can find a relation among an arbi-

trary choice 2n-4 from among them.

What is the condition for which there exist three uniform distinct integrals

F _ const., el, --__const., _ _ const.?

Let FO, _0 and YO be the values of these three integrals for b:O. We could

demonstrate, as above, that we can always assume that there is no relation what-

ever between FO, % and YO"

We would then find, by setting

that we have

W@0 _0
,,

aDx /dl;h a'_,o alh a+o'_ (13b)

Thus equation (12a) implies as a necessary consequence, not only equation

(13a) but equation (13b). By reasoning quite similar to the preceding, we would

see that this can occur in only two ways:

Either there is a relation between FO, % and _0' which is contrary to the

hypothesis which we have just made;

Or, if the Jacobian of an arbitrary choice 2n-3 of functions D X is zero as

well as all its minors of the first order.

From this it would result that, if xI and x2 satisfy condition (12a), there

is among an arbitrary choice 2n-3 of Dk not one, but two relations.

In other words, expressions (14) can be calculated by means of 2n-3 from

among them.

Expressions (14)which depend on the coefficients of the development of the

function F I are given quantities of the problem, and we will always be able to
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verify if there are one or two relations among2n-h of these expressions.

Generally, we will discover that there is but one, and from this we will
conclude that there exists no analytic and uniform integral other than F.

What will happen, however, if this is not so? To be able to state the result
in a complete and rigorous manner, I amgoing to makeuse of a terminology anal-
ogous to that of the preceding article. I will say that a class is ordinary, if
there is no relation between 2n-4 of expressions (14) formed with the coefficients
of this class, that it is singular of the first order, if there is one, singular
of the second order, if there are two, etc. More generally, a class will be
singular of order q if there are q relations amongan arbitrary choice 2n-3 of
quantities DX.

Let 6 be an arbitrary domain including an infinity of systems of values of
Xl, x2 of z and of u.

If we can find in the domain 6 values of xI and x2 satisfying condition (12a),

I will say that the class 2_belongs to this domain. I have said of the values of
q

xI and of x2 and not of the values of xl, X2_zand of u,because the first member

of (12a) depends only on xI and x2.

I will then be able to state the following result:

I will designate by D a domain including an infinity of values of Xl, x of
2

z and u.

/25O

If in every domain 6 that is part of D, we can find an infinity of ordinary

classes, we will be certain that there does not exist outside of F any other inte-

gral which is analytic and uniform with respect to x, to y, to z and to u, and in

addition periodic with respect to Yl and to Y2 and which remains such for all real

values of Yl and of Y2' for sufficiently small values of _ and for the values of

xI, x2 of z and u which belong to the domain D.

If in all domains 6 that are part of D, we can find an infinity of singular

classes of the q-th order, it will not be possible for them to exist more than

q+l distinct uniform integrals, including F.

Application to the Problem of Three Bodies

85. I shall now concern myself with applying the preceding ideas to the

various cases of the Problem of Three Bodies.

Let us begin by the particular case defined in article 9. In this case, we

have 2 degrees of freedom only and four variables
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Yt---- 1, yt = g-- t

(cf. article 9) ; we have, in addition,

!

The Hessian of F O is zero, but we can, by the artifice of article 43, reduce the

problem to the case where the Hessian is not zero.

If, therefore, a uniform integral were to exist, it would be necessary that

in the development of F I (which is the perturbing function of the astronomers),

in terms of the sines and cosines of the multiples of Yl and Y2' all coefficients
vanish at the moment when they become secular.

Examination of the well-known development of the perturbing function shows

that this is not the case.

We must therefore conclude that in the particular case of the Problem of J251

Three Bodies there is no uniform integral distinct from F.

In my memoir in Acta mathematica (Vol. XIII), in order to establish the same

point I made use of the existence of periodic solutions and of the fact that the

characteristic exponents are not zero. The demonstration which I give here differs

fromthat of Acta only in form, but it lends itself better to the generalization

which will follow.

Let us now consider a somewhat more general case of the Problem of Three

Bodies, that where motion occurs in a plane, and let us assume that we have re-

duced the number of degrees of freedom to 2, as we have said in article 15.

We then have six conjugate variables_ namely

1, 1', h = m -- m'.

Let us assume that we develop the perturbing function F I in the following

manner

F 1 = Z BmLm , e d'_-'_-Itin,l+ m,l')

the coefficie_s B will be functions of _L, _'L', H and h.

_,½

Let p and q be two arbitrary integers first among them; let us form the ex-

pressions

B.Ap,),qBi,p,),, q ()., ;V=O, -'-,, ±a ..... ad inf.). (14)
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Let us give L and L' values satisfying condition (12a), i.e., such that the

relationship of the meanmotions is equal to -q.P

In order for the problem to admit a uniform integral other than the vis viva
integral, it would be necessary for there to be a relationship between two arbi-
trarily chosen from amongthem (n=3, 2n-4=2), i.e._ that all these expressions (l_)be

functions of BO,O, i.e., of the secular part of the perturbing function. Now

examination of the well-known development of this function showsthat this is not
the case.

Wemust conclude that, outside of the vis viva integral, the problem admits
no uniform integral of the following form Z252

4,(L, L', H, l, 1', h)= coast.

periodic in _ and 4'.

But this is not sufficient for us; we must still demonstrate that the pro-

blem admits no integral of the following form

q_(L, L', H, If', 1, l','t_, t_')= const.,

where the function @ depends in an arbitrary manner on _ and on _' instead of de-

pending on the difference _-_'.

To do so we must take the problem with 4 degrees of freedom, as we did in

article 16.

We will then have eight conjugate variables

i_I., _'v, _n, Fn',
I t l', w, m'.

The coefficients B and expressions (14) then depend on L, L', _ 9',

ml, m 2

and _'. When we have given L and L' constant values such that the relation of

q expressions (14) will only depend on the four variables
mean motions is equal to _,

_' _ and _'

In order for there to be a uniform integral other than that of the vis viva,

it is necessary that we have a relation among four arbitrarily chosen (2n-4=4,

n=4)of the expressions (14); this is what occurs since all these expressions are

9' and _ -_'only functions of three variables _ ,

Therefore nothing opposes the fact that there exists an integral other than

that of the vis viva, and in fact there does exist one, namely the areal integral.
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In order for there to be two integrals, it would be necessary that there be

a" relationship among an arbitrarily chosen three of these expressions, that is to

say, that all these expressions depend only on two of them. This is not the

case.

Therefore, outside the vis viva integral and that of the area, the problem

admits no other uniform integral.

Let us at last proceed to the most general case of the Problem of Three

Bodies, and let us set the problem as in article ii, i.e., with 6 degrees of

freedom and with the twelve variables:

/253

_L, _G, _O, _'L', _'G', _'O'.
l, 6", O, r, _,', o'.

Expressions (14), after we have given L and L' proper constant values chosen

as above, still depend on the eight variables G, G', 0, ®', g, g', 0,e'

In order for these to be q uniform variables distinct from F, it would be

necessary for there to be a relationship among 2n-3-2=9-q arbitrarily chosen of

expressions (14).

It is easy to verify that these expressions depend only on five variables,

namely on

G, G', g, g'

and on the angle of the planes of the two osculatory orbits.

There is therefore a relationship between an arbitrary 6--9-3 of the express-

ions (14).

Nothing is therefore in oppostion to the existence of three new integrals and

they exist effectively: they are the integrals of area. But there is no relation-

ship between an arbitrary (5=9-4) of expressions (14).

Therefore, the Problem of Three Bodies admits no other uniform integral than

those of the vis viva and of area.

I have limited myself, in order not to interrupt the reasoning, to affirming

that there exist no relationships among expressions (14); I will later return to

this question.

It is known that Bruns has demonstrated (Acta mathematica, Vol. II) that the

Problem of Three Bodies admits no new algebraic integral beyond the integrals

already known.

The preceding theorem is more general in a sense than that of Bruns, because

I demonstrate not only that there exists no algebraic integral, but that there
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exists not even a transcendental uniform integral, and not only that an integral

cannot be uniform for all values of the variables_ but that it cannot remain

uniform even in a restrained domain defined above.

However, in another sense the theorem of Bruns is more general than mine;

I establish only, in effect, that there can exist no algebraic integral for all

rather small values of the masses, and Bruns demonstrates that there exist none

for any system of values of the masses.

Problems of Dynamics Where There Exists A Uniform Integral

86. There are problems where we know the existence of a uniform integral

and where we can propose to verify that the conditions stated in the preceding

articles are effectively fulfilled.

Let us take as an example the problem of the motion of a moving point M_

attracted by two fixed centers A and B.

I will assume, for simplification, that the motion occurs in a plane; I

will assume in addition that the mass A is large, while that of B is equal to a

very small quantity _ in such a manner that one may regard the attraction of

B as a perturbing force.

We will then define the location of the point M by the osculating elements

of its orbit about A, and we will designate these elements as the letters L, U ,

t , m, as in article i0. We will then have

! !

' • _ whence Fo=_-L_, ,_-KB;F =_-_, F,=

F I can be developed in the following form

FI---- Y-.B,ne *_-Imt.

The coefficients B then depend on L, F , and m , and in order for an integral
m

to exist, it is necessary that there be a relationship between three arbitrary

quantities of the coefficients of the same class (n-2, 2n-2=2_ I say 2n-2 in-

stead of 2n-4 because F 0 depends no longer on two variables xI and x2, as in

articles 84 and 85, but on one variable only), when we give L a value satisfying

relation (12a).

However, here all coefficients B (which have only one index) belong to the
m

same class and one relation (12a) is written simply m (dFo/dL)=O

where L=_. There could therefore be difficulty only for infinite values of L.

If, therefore, we again take up the abbreviated language of the preceding arti-

cles, of L, H; and w, but such that, for all these systems, the value of L is

finite, the class of which all these coefficients B are part will not belong to

the domain D; therefore nothing will oppose the existence of an integral which

remains uniform in this domain D.
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Let us proceed to another problem; that of the motion of a heavy body about
a fixed point.

This problem has been integrated in three different particular cases by
Euler, by Lagrange and by Mme.de Kowalevski (cf. Acta mathematica, 12). I be-
lieve that Mme.de Kowalevski has discovered other new cases of integrability.

Wecan therefore ask if, in this problem, the considerations presented in
this chapter oppose the existence of a uniform integral other than those of the
vis viva and of area.

I will assumethat the product of the weight of the body by the distance of
the center of gravity to the point of suspension is very small, such that we may
write the equations of the problem in the form

dx _ dF dy t aW
,

F = F,-I- I_FI.

Values xi and Yi form three pairs of conjugate variables; F designates the total
energy of the system; F 0 is its semi-vis viva; _ is a very small quantity and _GI

represents the product of the weight of the body by the distance from the center

of gravity to a horizontal plane passing through the point of suspension.

In the case where _ is zero (i.e., where the center of gravity coincides

with the point of suspension), the motion of the solid body reduces to a Poinsot

motion. Since we assume _ very small, it is this Poinsot motion which will

serve us as first approximation, in the manner of Keplerian motion in the study

of the Problem of Three Bodies by successive approximations.

I must_ before continuing, define two quantities n and n', which I will call

the two mean motions and which will play an important role in what follows. In

the Poinsot motion, the ellipsoid of inertia rolls on a fixed plane; let P be the

foot of the perpendicular lowered from the point of suspension onto this fixed

plane and Q the point of contact. This point of contact belongs to a curve fixed

with respect to the ellipsoid and called the polhody. At the end of a certain

time T, the same point of the polhody returns to Q' in contact with the fixed plane.

Let _ be the angle Q_Q'. We will set

n= T' n'=T

and n and n' will be the two mean motions.

This granted, we will be able to write the equations of Poinsot motion in the

following manner-

Let x, y and z be the coordinates of an arbitrary point of the solid body by

taking the origin of the coordinates at the point of suspension and the axis of

the z vertical.
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Let us set
l= nt+¢. l'=n'l+_',

¢ and ¢' being two constants of integration.

Let _, I] and _ be three functions of n, n' and i, periodic of period 2r in

t (these functions, a_ is known, depend on the elliptic functions); let 0 and

be two new constants of integration; we will have

x = cosO(_ cosl'--'tj sial')-- siaO cos? (_ sin l'--,- _-,cosl') -+- _ sinO sin_?,

), = slnO (_ cos/'--_ sinl')-+- cosO eos?((sial'-+- _ cos/')-- _ cosO sin?,

z = sin?((sinl'+ _ eosl')-+- _cos?.

If we assume that the point (x,y, z) is the center of gravity of the solid

body, F I reduces within a constant factor to z, so that we will be able to write

Ft = Y-Bm.I ¢¢-'-1(m1+1") + Y_Bm.o e ¢"ST('tzlJ "4-" y_ Bin.-1 e ¢L'i(ml-I'l,

the coefficients B depending only on n, n' and

When we give n and n' constant values satisfying condition (12a), B will

only depend on _ such that there will be a relationship between two arbitrarily

chosen from among them.

Values D depend only on _ and _ in setting, as in the preceding articles,

There will therefore be a relationship between an arbitrary (2n-3=3) of the D K.

Every class will therefore be singular of the first order.

Nothing opposes the existence of a uniform integral distinct from that of

the vis viva, and we know, in fact, that there exists one, namely that of area.

But the question is to learn whether a third can exist.

For this purpose, let us seek to learn the classes which are singular of

the second order. To do this. it is necessary and sufficient that there be among

three arbitrarily chosen of DX bwo relationships, and consequently that all D k
be functions of only one of them. We will thus be led to distinguish several

types of classes-"

i

(I) The class- G which contains all coefficients B This one is singularm.O"

of the second order. We have in fact_

Bm.o ---'--Cm.o cos _,

Cm. 0 depending only on n and n' and consequently having to be regarded as constant
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since we assumedthat we gave n and n' constant values. Then we have

D), = C)_.ocos ? _.

In order for D_ to be functions of only one of them, all CK. 0 must vanish with

one exception, or the function _ must reduce to an exponential

Ti-I m. I.

However, in order to satisfy condition (12a), it is necessary to give n the value

O; what is therefore the Poinsot motion for which n=0? A bit of attention shows

that it is the one which corresponds to the uniform rotation about one of the axes

of inertia. In a similar motion, the function _ is a constant independent of _.

This proves that all CX. 0 are zero for these particular values of n and of n',

with the exception of CO. O.

The class is therefore singular of the second order.

m

(2) The classes of the form T which contain only three coefficients

B_n.I, Bo.o, B-m.-l-

These classes can be singular of the second order only if

Bm.t = B'm.-I : o

or, what comes back to the same thing_ if in the development of {+i_ and of {-]I]

in positive and negative powers of eil, there are no terms in e+mil(assuming

and Z real).

This will not happen, in _eneral, when the ellipsoid of inertia is not one

of revolution; but_ if this ellipsoid is one of revolution, we will have

[=Acosl+Bsinl+C, _=A'cosl+B'sinl+C',

A, B, C, A', B',C' being constants. The result of this will be that we have

Bin.! = -- B-m.-I =o_

unless m=l, O or -i.

m
All classes Twill then be singular of the second order, with the exception

i 0 -i

of classes i--'T and -_.

(3) All other classes reducing to the single coefficient B0. 0 will be

singular of the second order.

In summary, if the ellipsoid is one of revolution_ all classes are singular
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] 0 -i
of the second order, with the exception of classes ±@, _ and-_.±

Therefore nothing opposes the existence of a third uniform integral and even

that it be algebraic, provided that the Jacobian of the three integrals vanishes

when we make n':O or n'=_n. (This last condition is not necessary in the case of

Lagrange, that is, if the point of suspension is on the axis of revolution, be-

cause then _ and _ reduce to constants.)

If, on the contrary, the ellipsoid is not one of revolution, there is an

infinity of classes which are not singular of the second order, namely classes
m
_; but let us consider a domain D containing an infinity of systems of values of

n, n', _and 8 and let us assume that for none of these systems is n' a multiple

m
of n; none of the classes T will belong to this domain. Therefore still nothing

will oppose the existence of a third uniform integral, provided that the Jacobian

of the three integrals vanishes when n' is a multiple of n; here the result is

that this third integral cannot, in general, be algebraic.

The conditions stated in this chapter being necessary, but not sufficient,

nothing proves that this third integral exists; it is advisable, before making a

i
statement, to await the complete publication of Mme. de Kowalevski's results.

Nonholomorphic Integrals in

87. Until now we have assumed that our uniform integral # was developable

in integral powers of b. It is easy to extend the result to the case where we

would abandon this hypothesis. Let us assume, for example, that % can be developed

in integral powers of /_; we will be able to write

@ : @'_-_@',

@' and @" being developable in integral powers of b.

If @ is an integral, we must have identically

IF,_] = IF,¢']+ _[F, ¢']: o.

Since (F, _') and (F, @") can be developed in integral powers of b, we must have

separately [F,¢']= [F,¢'] = o.

Therefore @'and 9" must both be integrals.
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iSince these lines were written, the scientific world has had to mourn the pre-

mature death of Mme. de Kowalevski. Those of her notes which were found are

unfortunately insufficient to permit reconstructing her demonstrations and
calculations.

224



If, therefor% we have demonstrated that a uniform integral developable in

£ntegral powers of _ cannot exist we will have demonstrated that a uniform inte-

gral developable in integral powers of _ cannot exist either.

More generally, let

e_(_.), e2(_-), ..., 6p(_) (i)

be p arbitrary functions of _.

Let us assume that _ is of the form

@-- A°-I8'(,_)÷ A"_ F'8_(_)"l-A"I F'8_(F)_-"'" (2)

÷ A0.1_ (_)+ A i.,_i (_)+-.-
-4- ............ ,. ......... • .....

-I.- Ao.p Op ( ix ) -t- Aj.p F._p (F.) -t- ....

values A being functions of x and y independent of _.

We can always assume that among the p functions (i) there are no relation-

ships of the form

=o, (3)

_i' qc2' ..., _p being developable in powers of _. If this were in fact so, one

of the functions _i' _2' ..., q0p will not contain _ as a factor; for, if all these

functions contained _ as a factor, the first member of (3) would be divisible by

and we would make the division.

Let us assume, for example, that _i does not vanish with _; we will be able

to solve equation (3) with respect to _i and we will have

... will be developable in powers of _, and if we replace eI by this value

%' %'

in expression (2), we will have reduced by unity the number of functions (i).

Let us therefore assume that these functions are not connected by a relation of

form(3).

We will be able to write

---- cl,t Oi --I- cl'zOz-W...+ q_e6p,
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#i' @2' ..., @p being developable in po_¢ers of _. If @ is an integral, we will Z261

h ave

[F, @] : 0,[F,@,] ÷ 0.[F,@,]+...+ 0p[F,@p] : o.

I say that we will have separately

(4)

[_, ¢,] =IF, ¢,] ..... [_, ¢,,] = o. (5)

For, if this were not so, as quantities (F, _i) (i=1,2, ..., p) are develop-

able in powers of _, relation (4) would be of form (5), which is contrary to the
hypothesis we have just made.

Therefore relations (5) hold true.

Therefore @i' _2' ..., @p are integrals.

If, therefore, we have demonstrated that there cannot be a uniform integral
developable in powers of _ we will have demonstrated that neither is there a

uniform integral of form (2).

I will add that this reasoning applies when functions (i) are finite in
number.

Discussion of Expressions (14)

88. I return to the subject which I had reserved above, namely the de-

monstration of the fact that there exists no relationship between an arbitrary
2n-4 expressions of (14) in the case of the Problem of Three Bodies.

In order to define expressions (14), we have assumed that the perturbative

function FI had been developed in the following form

Ft ----- _1Bmtmt_V-'d'q{mtl+m/'lt

the coefficients B being functions of the other variables
mlm2

(1)

L, L', D, W, w, w'

or

L, L', G, G', g, g', e, 0', 0, 0'.

It is not in this form that we ordinarily develop the perturbative function in
treatises on Celestial Mechanics.

We take as variables:

The major axes, the eccentricities, the inclinations, the mean longitudes
and the longitudes of the perihelions and of the nodes.

Z262
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However, it is easy to see that this goes back to saying the same thing.

If we set

B,,n,m_ _ Gm+_,: e v-_l (m'g 4"m'_'' +m'c_+m+l}'),

it will follow that

F, -----T, _m,m_e.c'_t'tt,!l+tP+_)+m,{l'+g'+fj')]. (2)

the exponential factor depends only on the mean longitudes

l--r- g + O, 1'-+ g-'+ B'

and the factor C depends only on the other variables, major axes, eccentri-

mlm 2

cities, inclinations, longitudes of the perihelions and of the nodes. Thus we

will in this way fall back to the usual development of the perturbative function.

Expressions (14) can then be written

"k' -). "k' , -),
B)p.k q B).p.),q -_- C-xp.),q C),.p.),+q.

In order for there to be a uniform integral, it is therefore necessary that

there be a relationship between an arbitrary 2n-4 (n=4 i_%he plane, n=6 in

space) of expressions

CXp.),q_" C).e.),.q-X(),,).'= o, -+- t, _ _, -'---3, ... , ad inf.) (14a)

formed by means of the coefficients of development (2).

Thus, in order to apply the principles of the present chapter, it is not

necessary to make a new development of the perturbative function by means of new

variables, as it would be in development (i). We can make use of the development

already used by astronomers, that is, development (2).

The coefficients C can be developed in increasing powers of the eccentri-

mlm 2

cities and inclinations. Let us therefore consider the development of one of these

coefficients in powers of the eccentricities and inclinations. We know (cf. article

12) that all terms of this development will be of the degree Iml+m2 I at least with

respect to these quantities and, if their degree differs from Iml+m21 the difference

is an even number.

We will therefore be able to write

C+l,Pllm $ _ ,-sOt_.,,,_, + C'_,.., +... + C_,.,, + ....

Cp representing the total of the terms of the development which are of the degree

mlm 2
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[ra1+m_l +'_p

with respect to the eccentricities and inclinations.

We will say that CO is the principal term of C

mlm 2 mlm 2

terms are its secondary terms.

and that the other

There will be an exception for coefficient CO0; we have, in this case,

Coo= C_o+ C_÷ ....

0 depends only on the major axes, if these major axes are momentarily regardedCOO

as constants, as we have done in previous articles (it is, in fact, in assuming

the major axes constant that the existence of a uniform integral implies that of

a relationship between 2n-4 expressions (14)); if, therefore, the major axes are

0
constants CO0 will also be a constant which will play no role whatsoever in the

calculation.

i

It is therefore CO0 which is of the second degree with respect to the eccentri-

cities and to the inclinations, which we will agree to call the principal term of

C

O0

/264

If, then, we replace development (2) by the following

ch + co', + x C°,,, d-_f,,,,,+,.+_+,,,_,--,t...e,, 4 ( 3 )

we will say that we have written the development of the perturbative function F I
reduced to its principal terms.

This granted, what is the condition for which there be a relationship between
an arbitrary 2n-4 of the expressions

x. -x
C_,p._,qC_,.p._.,q(X, X'=o, --*-_,-+,_.... ). (14)

Let us form a table composed of an infinity of rows formed as follows:

The various lines will correspond to the various integral values of the index
X, positive, negative or zero.

The first element of the row with index X will be

3,CXp.).q,

the others will be the derivatives of Cxp.xq with respect to the different vari-
ables
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e, e', _ _'_ i, i'_ e, 6',

that is, with respect to the eccentricities, longitudes of the perihelions, to

the inclinations and to the node longitudes.

Thus, the necessary and sufficient condition for there to be a relationship

between 2n-4=8 (n=6 in space) of relations (14) is that all determinants formed

by taking nine arbitrary lines in this table be zero.

Needless to add, in the simplest cases, for example when the three bodies

move in a plane, the number of columns and rows of these determinants is smaller

than 9.

We have seen that all terms of the development of C are of the degree
mlm 2

Iml+m2 I at least. Therefore, among the elements of row of index _ (which I assume

developed in powers of the eccentricities and of the inclinations), the first

X CXp. Xq begin with terms of the degree

The case is the same for derivatives C xp,

the derivatives of C
xp,

degree

with respect to • and to 0, while

with respect to e and to i will begin with terms of the

]_p+kq[--,-

For the row index O, the first term reduces to O; the developments of the

derivatives of CO0 with respect to _ and to 0 will begin with terms of the second

degree, and those of the derivatives of CO0 with respect to e and to i will begin

with terms of the first degree.

Our determinants are in turn capable of being developed in powers of e and i.

If a determinant A is formed by the rows of indices

all the terms of its development will then be at least of the degree

IP+ql (I 7hi + i _',1 +- •"-*-I_', I -+-13_=I) -4"

I set this quantity equal to _.

There is an exception in the case where _=0; all terms are then at least

of the degree

J265
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Ip+¢l (I x,l + I;t,I +...+ Ix,l)_ _.

I will still set this quantity equal to _.

The determinants A having to be identically zero, the total of the terms

of degree _ will also have to be identically zero. Now we will obtain these

terms of degree _ in replacing in the determinant A each of the coefficients

C xp._qby its principal CO_p, Xq (or CO.Ol if _=0).

The determinant A0 thus obtained will therefore have to be identically zero;

now what does this condition

£0=0

signify?

Let us form the expressions

0 , 0

(Cxe._)),(C).p.),q)-),().,),'=--_,± 2,...), (t4a)

obtained by replacing, in expressions (14), each coefficient C by its principal
t erm.

If in expression (14) we make _=0, this expression reduces to

C0.Q.

i
We will adjoin to the table of expressions (14a) the expression CO0 which

is a polynomial integral of the second degree with respect to e and to i.

Thus, the condition A0=O signifies that there is a relationship among an arbi-

trary eight of the expressions (14a) contained in the table thus completed.

Thus_ in order for there to be a uniform integral, it is necessary that there

be an integral relationship among an arbitrary of these expressions (lha).

The coefficients C were infinite series, and expressions (14) were presented
in the form of the quotient of such series.

On the contrary, expressions (!4a) are rational with respect to e, i, the sine
and cosine of the m and of the 8.

Verification is therefore facilitated by substitution in the coefficients of

their principal terms.

It even becomes easy for small values of the two integers p and q.
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Whenwe thus have proved that the determinants corresponding to small values
.of the integers p and q are not zero, it becomesdifficult to retain the illusion
that the determinants corresponding to the large values of the sameintegers can
vanish and thus permit the existence of a uniform integral.

A doubt might, nevertheless, still remain.

We could assume,however immrobable it may seem, that amongthe classes
(to use the language of article 84), there is a finite numberof them which are
ordinary and it is precisely these on which verification is based; but there are
an infinity of them which are singular.

In order to completely erase this final doubt, it would be necessary to have
a general expression of functions (14) or (14a) for all values of the integers

X', p and q and this expression could only be extremely complicated.

Happily, Flamme, in a recent thesis, I has given the approximate expression
of the terms of increasing rank in the development of the perturbative function,
and this approximate expression, muchsimpler than the complete expression, can
suffice for our purpose.

Nevertheless, the form which Flammehas given it is not useful for the pro-
blem which concerns us; we will be obliged to complete his results and to trans-
form them considerably.

I will, therefore, return to this topic in the next chapter, after having
treated the approximate calculus of the various terms of the perturbative func-
tion form; although the preceding considerations are of a nature to convince the
most skeptical_ they do not, nevertheless, constitute a rigorous mathematical
demonstration.

89. Onelast remark can_ to a certain measure, facilitate verification.

Let us again take relations (13), from article 84, which is written

( a.. #.o)÷g,f#B .... a¢o aB..... aCd_--B ..... mJ-_w +ms dxl] x_.a\ dzi dui--" dul dzi] -°"

In setting ml=Xp, m2=Xq in this equation, I will obtain a particular relationship

which I will call (!3a); in setting ml=X'p, m2=X'q in it, I will obtain another

particular relation which I will call (13b).

Then let

M)..).,= Btp.kqB).p.),,q,

iparis, Gauthier-Villars, 1887.
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will be one of expressions (14) which have played such a large role in the
MX._

preceding articles.

Let us multiply (13a) and (13b), respectively, by

and add; it will follow that

B;p.;q and _rp,r_

\ dr, du_
d log M_.;. dr>©\

dui --_zi') = o,

or, in adopting the notation of the brackets of Jacobi,

or

[Iogblx.X,, ¢1,_]= o,

[M>..r,_o]= o.

If therefore M and M' are two expressions (14) belonging to the same class,

we will have to have

[_z, _0] = [_r, _,] = o,

or, by virtue of the theorem of Poisson,

[[M,M'],,0]=o,

from which we can conclude that (M,M') is a function of 2n-4 of expressions (14).Z268

It must not be forgotten that the brackets must be calculated while considering

xI and x2 (that is to say in the case of the Problem of Three Bodies, _L and

_'L') as constants.

232



CIL_P2ER 6. APPROXIMATE DEVELOPMZNT OF THE PERTURBATIVE FUNCTION

Statement of the Problem

90. I have said that Flamme had given a remarkable approximate expression

of the terms of higher order of the perturbative function. He was able to do so

by applying to this problem the method of Darboux, which permits finding coeffi-

cients of high order in the Fourier series or in that of Taylor, when we know

the analytic properties of the function represented by these series.

However, the method of Darboux is applicable only to the functions of one

variable, whereas the perturbative function must be developed in terms of the
sines and cosines of the multiples of the two mean anomalies. Thus we have here

the procedure used by Flamme: he first obtains, by the usual process, a first

development of the perturbative function whose terms are of the form

A _t eir_,,+T,,,, p'_'eC_',.'*T'.'r,

p being the radius vector of the first planet, v being true anomaly, u being
the eccentric anomaly; p', v', and u' are analogous quantities for the second

planet •

Then the two factors

pa ez@_-,-'r,,_and P'a' et_'''+'z'''J

depend only on a single variable, namely" the first on the mean anomaly _ of the

first planet, the second on the other mean anomaly _'. Flamme applies to each of

these two factors the method of Darboux.

This artifice cannot suffice for our purpose; we must_ on the contrary,

apply the method of Darboux directly to the perturbative function and to do so we

must extend this method to the case of the functions of two variables.

91. The function which we must develop is the one we have called FI and of

which I am going to recall the expression by returning to the notations of arti-

cle !i.

We then have

F = y._m., .ra'_ -" _ "- ,_,

m2Tn_ re,lint mira:

The function F thus defined depends on variables (4) from article ii, on

ml, m2, _ and _. If we assume that m I, m 2 and _ are known functions of the

parameter _ and can be developed in increasing powers of this parameter, F

233



will depend only on variables (4) and on b, and will be developable in increasing
powers of _.

This can occur in an infinity of ways; we may assume, for example, that ml,
and _' are constants independent of b.

The variables (4) are the Keplerian variables relative to two osculatory
orbits defined in article ii. The radius vector in the first osculatory orbit is
AB, in the second orbit the radius vector is CD. The angle between these two
radii (which is nothing other than the difference in true longitudes of the two
osculatory orbits if these two orbits are in the sameplane) is the angle BDC,
which I will call simply D.

The quantities (),, +y, +o 3),(y[ .2 ,"_0_-_0,) and AB depend only on variables (4),

not on b.

(4) but also on b.

of b. We thus find

i i

We can therefore propose to develop _' pC_'AC, BC

On the other hand, _2' _, AC and BC depend not only on the variables

in powers

2
•,--_ + _' + terms divisible by b ,

2
•_= B'+ _'--J'+ terms divisible by _

m!

t I 2

--= + terms divisible by b ,
BC _/AB'+ CD'-- 2AB.CD cosD

2
, r _ ARco_D + terms divisible by b •

A-"-_= _g m, CD'

If we then set

F---- Fo+ _F,+...,

it follows that

Fo= YI+YI+Yl rl+Yl +Y! B;rn, B,",
2_ + " 2[_' CD AB"

Ft= +
AB CD ,¢/AB_+ CD' -- 2AB.CD. (_osD CD'

/271

Let us consider s_ccessively the various terms of the perturbative func-
tion F .

1

At the outset the first term

AB r

depends only on the mean anomaly t and not at all on the mean anomaly t'; it

therefore cannot in the final development give us the terms in
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sin(m/+ nl') or costa/÷ nl'),

where n_O.

In the same way, the second term

--CD=---_

cannot in the final development give us the terms in

sin(ml+nl') or eos(ml+nl'),

where m_O.

We will therefore in general be able to set aside these first two terms.

The last term

can be placed in another form. If I designate by i the inclination of the orbits

and by v and v' the true longitudes measured from the node, I have

whence

cosD _--- cos¢cos_'_ coslslnf;slnvp

AB cosD =(AB cosy) cosy' "C-_'"_ ÷ cosi(AB sinv) sinv'

/272

The method of Flamme is directly applicable to the four factors

C05 Vt Sih P'

ABcosv, --C-D-i,ABsinv, ]ZD----/-

It therefore remains to develop the third term

F_ = CrAB '+ CD' -- aAI3.CD, cosD '

which is known under the name of the principal part of the perturbative function.

We shall now concern ourselves with the development of this principal part.

Digression on a Property of the Perturbative Function

92. We might be tempted to avoid the necessity of developing the principal

part of the perturbative function by employing the following artifice.
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We have found

r r' + _'Ft°+ {3_'r co._,to
• T "2

through designating by r and r' the two radii vectors and by w the angle of these
two radii vectors.

In order to arrive at this result, we have taken, as in article ii, for os-

culatory _rbits the orbit of B with respect to A and that of C with respect to D.
the center of gravity of A and of B.

However, it is clear that we could equally have chosen as osculatory orbits

that of C with respect to A and that of B with respect to E, the center of gravity
of A and of C.

This goes back to permuting two planets B and C; we could therefore have

found in this way as a new perturbative function_

whence
/27_,

F',-- F,= t_,(_'_o,_ _co_2__
f, 7"\

If there exists an integral

we will be able to write, taking the osculatory elements of the first two orbits
[variables (4) of article ii], as variables and we will thus have

@o+ _4h +...= const.

We will also be able to write it by taking for variables the osculatory ele-

mentsof the two new orbits (orbits of C with respect to A and of B with respect
to E); we will then have

'1,_-4--_g,_ + .... coast.

@_ will be formed of the elements of the two new orbits as @0 was formed from

I

the corresponding elements of the two former orbits, but @i will not be formed
as _i"

We must then have, as we have seen in article 81,

[_o,Ft]'+'[¢l'l, Fu] =o,
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and similarly

[¢;, V'j+ [¢i. F_l=o;

!

since 90 is formed in the same way as _0_ I can suppress the prime and write

wh enc e

[,I,0, F_]+ [,I,'_ F,]= o,

[0,, F_-- F,]÷ [q_'_--q',, Fo]=o. (i)

We have seen that if there exists a uniform integral and if_ after having de-

veloped F 7, we form the expressions (14) of article 84, a certain number of re-
lationships must hold between these expressions.

However, in reasoning from equation (i), as we have done from equation (3)

of article 81, we would arrive at an analogous result. Let us develop F{-F I

and let us by means of this development form expressions (14); if there exists

a uniform integral; a certain number of relationships must exist among these

expressions.

If, therefore we could establish that these relationships do not exist we

would have demonstrated that there can no longer exist any more uniform inte-

grals. Because the development of F_-F I is incomparably easier than that of FI,

it seems that this process must considerably simplify our task.

f274

However; this is so artificial that a priori we conceive doubts concerning

its usefulness and we wonder it' it is not illusory. This is in fact s% be-

cause expressions (14), formed by means of FI-FI,' are either zero or indeterminate.

Let us assume that we develop F_-F I in the following form:

F_ _ Fn ----_rB,n,,., e ¢'Ii°',t+'',t'_.

The coefficients B will be functions of _L, _'L' and of other osculatory
mlm 2

elements ( i and i' excepted). Let us give L and L' values such that

/111 R + nil/';.'== 0

(calling n and n' the mean motions).

I say that for these values of L and L' the coefficient B
mlm 2

To show this, I shall make use of the following lemma.

will vanish.
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Let

xl,x2,...,x_; yl,)'i,...,y_

be a system of variables, conjugate in pairs; let

(2)

(3)

be another system of conjugate variables. Let us assume that these two systems

are connected by relationships such that we may pass from one to the other with-

out altering the canonical form of the equations. We must then, according to

article 5, have

(4)

Let us assume that values x'i and the Yi' depend on a certain parameter

and are developable in terms of the powers of _; also for _=0, x_l and y_' reduce

to xi and Yi"

We will then have

._=yt+ _l+.., (5)

{i and _x being functions of x.1 and Yi"

Then the expression

r.(Itdye--_tdxL) = dS

will be an exact differential. This is a necessary consequence of identity (4),

which obviously implies the following:

v.(_yl-- dy_B_l+ dx_l- d,u_xD = o.

Let us now consider the canonical equations

where

dxt dF dyt dF
d-7 =-a--j,' -a-i =--a_,'

F = Fo(xi, yi)'+" _.Fl(x_, y,r)+ ....

Let us change variables and take the variables (3) as new variables;

it will follow that

F ,, p r , p g ....= F,(z_,y,.)+ l_Ft(z_,y_)+
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If we replace x_ and ' by their values (5), it will follow thatm Yi

F,(_.y'_)=F'o(xl,yi)+_ L+_,_ + terms divisible by _ ,

F_(_, 7_) = F_(x_,yi) + terms divisible by

whence, identifying the two developments,

Fo(Xl, yl) "_ F'o(xi, yi),

, _ /dF_ dF_ lit).F,(_,, _,) = F, (=,, Y,)+ 2,'_,_, _'+

If we observe that Fo(Xi, Yi)=F_(xi, Yi ) and that

dS dS
t,=_,' _'=-_'

we will be able to write

F_-- r_ = [F,, $]. (6)

Let us assume that F 0 depends only on two variables xI and x 2 and that F I,

and Y2" This is what happened
F2 are periodic of period 2w with respect to Yl

in all the problems which we have dealt with up until now.

Let us also assume that S is periodic in Yl and Y2 and let

S _ _.A • l_-ttm,y_+m_*_,

A depending on Xl, x2, ..., Xn; Y3' Y4' "'" Yn"

' and ' in the same form,
Let us assume that we wish to develop F I FI-F I

FI-- F't = v.B c¢_'Y_m_r,+'n'-_p.

Equation (6) shows that

_--- _ "t- ml

If therefore we give xI and x2 values such that

dFo dFo

we will similarly have

and let
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Let us apply this result to the case which concerns us.

Let

13r., _c, _s, FL', lye', _'s'; 1l, g, e, r, s', e' (7)

be the variables (4) of article ii relative to the two former osculatory orbits,
B with respect to A, C with respect to D.

Let

_3,L,, 13,G,, 13,o,, _',L;, i31Cl, _3;O;;
t,, _r,, 0,, q, _r_, oi J (8)

be the variables (4) of article Ii relative to the two new orbits (B with respect
to E, C with respect to A).

These variables (8) may replace the variables (7) without altering the

canonical form of the equations; they will depend on the variables (7) and on _;
they will be developable in terms of the powers of _; they will reduce to the
variables (7) for _=0.

We will therefore find the conditions where the preceding result is applicable,
and we must conclude that, if we set

F_ -- Ft = g B .... e_Z'_(_d+"',t),

B vanishes for

mlm 2

dFo d'F'o

This result can be directly verified without d_fficulty. Let us in fact refer

to the expressions given by Tisserand in his Mecanique celeste (Vol. I, p. 312).

The result which must be verified, translated into the notations of Tisser-

and, can be stated thus (I recall that Tisserand designates by _ the cosine of the
angle between the two radii vectors.

If we set

_i) = XBn.'_'et-:O';+n'_'_,

B vanishes for
n, n I



A s

-_ -t- -_ -----o;
a_t a,T

and, in fac% in returning to the expressions of the page which I have just cited,

we find

Bn.A' = \ha'=

C depending only on the eccentricities, inclinations and longitudes of the peri-

helions and of the nodes; this expression will therefore vanish for

_I ns2

and consequently for

R n r

--i..-t- _ ----_0 .
¢l'! a,_t

Q. _. D.

I have nevertheless thought it necessary to connect this theorem with a

more general theorem, which perhaps will permit us to discover other analogous

positions.

Principles of the Method of Darboux

93. After this digression, I resume my principal subject. It is first pro-

per to recall the results of Darboux_ which must serve us as a point of departure.

(i) Let there be a series

?(x) = _.a,,x",

admitting r as radius of convergence.

We will have, when n increases indefinitely_

limanp '==o sip<r,

lima_p" = _ si p> r.

(2) Let us consider now that the function

?(x)= Za, z"

remains finite on a circumference of radius r, as do its first p derivatives;

the product nP+lan rn will not increase beyond all limits when n increases.

(3) If we have
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?(x) = (1 -- _x) _ = Nan:c n,

we will have approximately

i mean to say that the ratio of the two members of the equality (i)

toward I when n increases indefinitely•

(1)

will tend

(4) Let us now consider that the function _ (x) has two singular points

x=_ and x=_ on a circumference of radius r; that in the neighborhood of point
x=_ we have

and in the neighborhood of point

+(_)=B,(, --_'_' B,(, " .. B+(,-- _\+'

_(x) and _l(X) as well as their first p derivatives remaining fixed. It will

then follow that for n=_

f ?1 I-_, l l
nV-Y+ I E Bi - -----o,

limnP+tr '_ a,+--Y-A_ _ I'(--YD a_, F(--_i)

from which we deduce the approximate values of a
n

(5) If we have

T(x) = logo -- x),

/279

we will have

if

!

a a _ -- -- •
I| j

_(x) = log(, -- x)(! - x)_,

we will have approximately

an-- -- al-k[Ogn

I'(--kJ

This last formula is applicable only if k is not a positive integer; in this

case, we would have
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(6) Let

(_ n_+tk!
a,= n(n--t)--(n--k)

?(x) = Y,anx" -+-Y,a-n x-n ,

be a series containing positive and negative powers which is convergent provided

that

Ixl<n Ixl>r.

Let _ and _ be two singular points of the function <0(x) situated on the cir-

cumference [xl=R; let _ and 6 be two singular points of _(x) cn the circumference

Ixl=r. Let us assume that ff(x) has no other singular point on these two circum-

ferences •

Let

0eCx) = xb,,x,,,

be two convergent series for

Let

Ixl<n.

be two convergent series for

Ixl>,.

If the differences 9--@, _--6,,_--@,,_--@3 as well as their first p

derivatives are finite, the first in the neighborhood of point x=_, the second

in the domain of point x=_ the third in that of point x=_, the fourth when x is

near 6, we will have

limnp4-aR"(a"--bn--c")=° I for n=_).lira nP +-tr-n( a-n _ b-a -- e._n) = o

The approximate values of the coefficients an therefore depend solely on the sin-

gularities which the function _ (x) presents on the circumferences of its circle

of convergence.

Extension to Functions of Several Variables

94. Let us apply these principles to the case which concerns us.
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0
It is a question of developing a certain function FI of the two mean

anomalies t and Z' in the following form:

F_ _ _, Am,m, _./'_{m,;+ m,t') ;

We therefore have

£-|_ /,IF

4_'A .... =[ ] F_e-C'Sit-,, .... r, dldl,"
• _g _'0

It is a matter of finding an approximate value of the coefficient A when, the
m I mlm 2

ratio m-_ being given and finite, the two numbers m I and m2 are very great or more

generally when we have

m_ =: an + b, ms = on.+ d,

a, b, c, d being finite integers and n a very large integer ; a and c are firstamong these.

If I then say that we have approximately

A .... ----"?(n), (m_=an.-t-b, ms = cn -+- d),

this equality will signify that the ratio

A re,m____/,

?(n)

tends toward unity when n increases indefinitely and a, b, c, d remain finite.

The problem to be resolved being thus defined, I will make use of the followingnotations.

Let us set

I

eeL'--it = re, e'¢'Z'TI'__ t-a ,zT;

it will follow that

t"

If we then set for brevity

it will follow that

d

F(z, t_= F_t.a-b_-_z-;.,

II'l ! _ tl

F(.;, t) = .VA_,:_.t_z ,--7--;
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in setting for brevity

_= m|c-- _la-_-ad--bc--I.

Now let

"l'(_)= ayr.f F(z, ')dt,

the integral being taken with respect to t along the circumference It l=l.

will have

mt--d /4....

We

All the integrals are zero except those for which a=-i and which are equal

to 2iw.

If o_-i_ we will have

dml
ms = ¢n + d, _r_o

¢

It then follows that

(l'(z) = Z A,,,,,,,..z".

If therefore we develop %(z) in the form

.I,(z) = Xa,,z" + Xa_.z-., •

the coefficient Amlm2 will be nothing other than an if ml=an+b , m2=cn+d.

We are therefore led to seek the approximate expression of an

n and consequently to study the singularities of the function @(z).

for very large

95. The function @(z) is defined as an integral taken with respect to t

along the circumference |t I=I. We can replace this circumference by an arbitrary

contour C, but on one condition.

Let us for a moment regard z as a constant and F(z,t) as a function of t.

This function will admit a certain number of singular points.

It is necessary that between the circumference It [=i and contour C there be

none of these singular points.

Let us now vary z in a continuous manner; these singular points will be dis-

placed in a continuous manner. If at the same time we deform contour C in a con-
tinuous manner such that it passes through no singular point, function %(z) will

remain holomorphic.

J282
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The function _z) can therefore cease to be continuous only if it becomes

impossible to deform contour C such that it does not pass through a singular

point. This is how this can occur: let us consider that for a certain value

of z we have two singular points _ and _, one outside and the other inside the

contour C. If, in varying z in a continuous manner, one of them, _ for example,

comes near contour C, we will be able to deform C by making it recede, so to say,

before this singular moving point, in such a manner that this point _ can never

attain this contour. Thus _ will always remain outside C and _ inside C. However,

let us now assume that _ and _ approach each other indefinitely; contour C,

taken, so to say, between two fires, will no longer be able to recede before these

two moving points and the function @(z) will no longer be holomorphic.

Consequently, in order to obtain all singular points of @(z), it suffices

to express that two of these singular points of F(z,t) considered as a function

of t will merge into only one.

The series

@(z)= Zanz" + _a-nz _

will be convergent in a region bounded by two circumferences

Izl = R, Izl = r;

these two circumferences will pass through one or several of the singular points

which I have just defined.

However, if we wish to know which of these singular points are on these cir-

cumferences and which consequently define the limits of convergence of our series,

a deeper discussion is necessary.

All the singular points will in fact not be expedient for the problem. This

is true for several reasons.

In the first place, the function F(z,t) is not uniform; if two singular points

and _ of this function F considered as a function of t coincide for a certain

value Of z, it is necessary, for this value to be a true singular point of @(z),

that _ and _ belong to the same determination of F and in addition that this deter-

mination be the same as that which figures in the integral

which, taken along C, defines function @.

It is also necessary that these two points _ and _ not be on the same side of

contour C before merging into one.

Let H be a path traced in the plane of z and going from a point z0 of modulus

i to singular points zI defined above. Let us assume that we follow this path /284
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from z0 to zI and study the variations of @(z), taking for an initial value

4'(zo) = V-a_z_ + _a_,,z;".

Although function @(z) may not be and generally is not uniform, the partic-

ular determination of @(z) which we have seen is thus entirely defined, since we

are given the initial value and the path traveled.

It is then a matter of knowing if point zI is truly a singular point for this

particular determination of _(z).

The function F(z,t) not being uniform_ it is necessary to vary t not on

a plane but on a Riemann surface S possessing as many sheets as function F pos-
sesses determinations (this number can be infinite).

When z varies along the path H, the singular points will be displaced and

the Riemann surface S will be deformed.

It is on this Riemann surface that we must assume that contour C is traced.

For z=z 0 this contour will reduce to the circle Itl=l traced on one of the
sheets of S; when the surface S is deformed, we must deform contour C as well

such that no singular point will ever be found upon it. A special even delicate

discussion will then show if, for a value of z very near zI, the two singular

points of F(z,t) which merge for z=z I are separated by contour C, which is the

necessary and sufficient condition for point z=z I to be a singular point for the

particular determination of _(z) under consideration.

How can we now recognize if point zI is found on one of the circumferences

I:I=R, [z:=r

which bound the domain of convergence of the series

_,an ,_ -t-- _,a-nZ-ny

and if consequently it is one of those on which the approximate value we seek de-

pends?

Let us trace path H going from point z of modulus i to point zI such that

the modulus of z varies constantly in the s_me sense. If point zI belongs to one

of our two circumferences, it must be a singular point for the determination of

@(z) defined by path H, and which we will recognize by the method just explained. /28_

If point zI satisfies this condition, I will say that this singular point
is admissible.
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This granted, among all the admissible singular modulus points greater

than i, those which lie upon the circumference ]zl=R will be of smallest modulus.

Similarly, among all admissible singular modulus points smaller than i,

those which lie upon the circumference Izl=r will be of greatest modulus.

In conclusion, I will add that function @(z) possesses several determinations

which interchange either when two of the determinations of F(z, t) are interchanged

or when two of the singular points of F(z, t) rotate about each other.

I shall first seek to determine the singular points of @(z); I will then

determine by special discussion those which are apposite to the question.

Investigation of Singular Points

96. Let us restrict ourselves to the case where the motion occurs in a plane.

Let u and u' be the eccentric anomalies, sin _ and sin q0' the eccentricities,

L2 and L '2 the major axes, _ and _' the longitudes of the perihelions.

We will have

l=u--sln?sinu, 1'= u'-- sin_'sin u'.

The coordinates of the first planet with respect to the major axis of its ellipse

and to a perpendicular passing thru the focus will be

Lt(cosu-- sin?) and L' cos_ sin u :

these will therefore be the real and imaginary parts of {L2. If we set

= cos.u -- sin ? + ¢_'cos _?_n u.

If we set as well

= cosu'-- sin _,'+ ¢'-----Tcos?'sln u',

the coordinates of the second planet, related to the same axes as the first, will

be the real and imaginary parts of

Let

let

viL't e ¢'L-_tm'-t_.

[3= L't i,-se¢--'Tt_'-_ _,

_o = cosu -- sin? -- t/----_cos? sin u,

/286
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it will follow that

_0 ---cosu'-- sin?'-- _/Z_cos_sin u',

_o = L'IL-*e-¢-'"_'-'_';

!

L,F* = ¢_T_- P_)t_,o- P,,_o)"

0 F(z,t)
The singular points of F(z,t) are the same as those of FI, because

0 only by a power of t and the point t=O_ which in addition will
differs from F 1

not enter the discussion, is already a singular point of F_l"

0

of FI will be those for which u and u' and consequentlyThe singular points

t, and in addition those for which

whence

cease being uniform functions of i and i'

I am going to set

_=_,. or _,=po_,.

From this we will deduce

and

isinu = 7_ x-- ,

We will then have

in setting, for brevity,

I=_- _-- ,

| .l-

_il = ZI I

t _- eTM 2_ TM

and consequently of z and of

'(.,,i sin u'= _ -- •

)l'-----u'-- sin_' /"_" _,P"--2

,lu _1"/i '_

eil • = .y_'--i- _y --Y).

j _-- eict'tIca --_jC%_raeb_,

-=_ -_ +--_-- y
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Wewill have in addition

• .)
- + -- sins'+ _ •
'.,I

The singular points of F(z,t) are given us by

dl
d-'-u= I -- sin? cos-, = o,

dl'
d_ = i--sin_'cosu'=o;.

II ==_ --_ =o,

Ho = .%-- _o_,o= o.

We can transcribe these equations by making use of the variables x and y;

they then become algebraic; the first two are in fact written

2x -- sin_ (xl +, I)= o;

'ay -- sln?'(y2-+ - t) = o,

(i)

(_)

and the last tw% after clearing of the denominators,

•_[(.r, + t)-- 2x sin ? -- ¢os_(x,- ,)1 I (3 )
" = 13:r[(yi + ,)-- 2y sin o'+ eos_'(y2-- l)].

y[(x s "i- 1)--'Ix sin? + cos ?(x_.--- t)]

= 13,_l.(f + ,)- _y _;. ,'- co_?'(y,-O] _ (4)

In order to find the singular points of _(z), it is sufficient to express

the condition that two of the singular points of F(z, t) coalesce. However, this

can occur in two ways:
dl dr'

Either a singular point defined by one of the four equations _-G=O, _-_=O,

H=O, Ho=O will coalesce with a singular point defined by another of these four

equations: we will thus obtain the singular points of @(z) of the first type;

on the other hand two of the singular points defined by one of these four

equations will coalesce into one" we will thus obtain the singular points of

@(z) of the second type.

In order to have the points of the first type, it is sufficient to combine

in pairs the four equations (i), (2), (3), (4). We see that these points in no

way depend on the integers a and c.

In order to have the second-type points, this is how it must be done:

/288
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Let f(z, t)=O be one of the four equations (i), (2),

express that two of the singular points defined by this

suffices for me to write

(3), (4) ; in order to

equation coalesce it

,V
-- _---O

f = o, de

If we change variables which express z and t and consequently f as functions of

t and of t', it follows that

__ -- i d]" df
dt "=

so that the equation d--f=o
dt can be replaced by

,V d/
¢ -d2 -- a 3F = °

or just as well

c d f a d f
-- -._--- Oo

s tl--sin?cosu du t--.m? cosu' du'

The first members of equations (i) and (2) depend only on u or u': we can

set them aside.

However, we have singular points which will be given us by two equations

H = o, -_=o

or again by the two equations

J289

We have

Ho=o, -dr :o.

H = cos u -- sin ? + i cos _ sin u -- _ ( cos u'-- sin ?' + i cos _' sin u').

or

The equation_=O can therefore be replaced by the following:

c(-- slnu +/cos? cosu) + a_(-- sin u'+ icos?'cosu')

i -- sin? cos u ! -- sin ?' cos u'
=0
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Equally, the

c [cos ?(_'-+- l) +(x:--,)]
ax -- sin _(x 2 -_-J)

equation -T-_=O can be
u.u

a_ [cos ?'(y' ÷ ,) + (y' -- i)]
-t- --0.

ay -- sin :?'(y_ ÷ I)

replaced by the following:

(5)

c[-- cos _ (z'- -,- ,) -- :x' -- ,)]
ax-- sin ? (x'- I)

a L [- cos ?'fy' -_ ,) + Or' - *)]
-q- _0.

ay -- sin ?'(y* -_-l)

The singular points of the second type are therefore

and (5) or by equations (4) and (6); contrary to those of

therefore depend on the ratio of the integers a and c.

given by equations (3)

the first type, they

All singular points of @(z) are therefore given by equations.

These algebraic equations are simplified when we assume that _'=O. It is

then permissible to assume that m'=_ and consequently _O=B.

Equation (i) does not change, equation (2) reduces to y=O and there is no

need to consider it; equations (3) and (4) become

(x s _ ,)-- ax sin? _ cos?(x* -- l) = _xy,

y[(z' + ,)-- 2z sin? -- cosr(z'-- t)] = 2 _z.

(3)

(4)

Equations (5) and (6) become J290

The combination

c[coso(z''--,)_-(z'-- i)]
uw -- sin Qt(x' -,- I)

c[- co._(='_-,)+ (z'- ,)] ,*_
_0.

lar --sin cp(xs-,- t) y

of equations (3) and (5) gives

+apy =o,

a c [cos_ (x' -_ ,) -4-(z' -- O] 1
2._ - sin ?(x s -I- I)

-t- a[(x2_,)--axsin?-r-cos?(x'--O]x ----o, t

and that of equations (4) and (6) gives

ac[-- cos_(x'_-,_ _ (z' -- l)] I

a.z"--sin? (xS-t- I) i--a[(xt_l)--axsln?--c°s?(x_--l)] =o.
Z

(5)

(6)

(7)

(8)

Equations (7) and (8) give us the values of x corresponding to the points of
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the second type; equation (i) gives us the values of x corresponding to certain
points of the first type. It remains for us to speak of the points of the first
type defined by equations (3) and (4), for which equation (2) becomesillusory.

Equations (3) and (4) are written

If they are satisfied at the sametime, we will have

But

It therefore remains

_o=(, -- sin_?cos-)'.

I -- sin ? cosu = _,

so that the values of x corresponding to this type of singular points will be

given by the two equations

_z- si._(x'_,): _x, (9)

,_- ,_n_(_,-,)= --_p_. (lO)

The values of x which correspond to the singular points will be given us by /29 1

five equations (i), (7), (8), (9), (10). Let us observe that equations (1), (9)

and (iO) are reciprocal and that equations (7) and (8) change one into the other

when we change x into __i. If x is a singular point, it will therefore be the same
x

i
for--. This is something which was easy to predict.

x

If we set g=O, our equations reduce to x=O; therefore, when _ tends toward O,

the roots of equations (i), (7) and (8) tend toward 0 or infinity.

If we set

equations (3), (4), (5), (6), (7) and (8) become

(.T -- 'C') I g

Y---" (,--z_)' '

(3)

(4)
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_(_-_:)+ _Y = °' (5)
I -- _..T

c(l---" x*.) c_
-- ----o, (6)

e¢z----) a(_'----)'
, .------_-+ O+.,)_ ----o, (7)

___ , (,+_,)_, (8)

on the other hand, e_uation (i) gives us a solution

I

We have seen that when %oand T are very small, the values of x are very

small, or very large and as the equations do not change when we change x into
i

x' we must conclude that there are precisely as many very small values as very

large ones.

Our equations and the corresponding values of x are somewhat simplified when,/292

assuming _ very small, we neglect the square of this quantity.

Equations (i), (9) and (I0) then give us respectively for x three very small

values which are approximately

and three very large values,

z=? _ , ( )-) .Z, _. - ) Z _) I

---2 ,-- a x+_' ii

which are approximately

z= -, z=--, z .... (lla)
? ? ?

Equation (7) gives us two very small values, approximately defined by the

equation
4x'(a ÷ c)+2xg(e--_a)+a?'=o, (12)

and a very large value, which is approximately

Equation (8)

_a_c

..... (13a)
_ a

gives us two very large values, defined by
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4(a + c) + 2x_(c-- 2a)+ ax'?' =o, (12a)

and one very small, which is written

a (13)
_ a-4- C

It is easy to verify that equations (12) and (12a) have real roots when

C<o. If therefore c and a are of opposite sign and _ is sufficiently small, equa-
a

tions (7) and (8) will have real roots.

The values of x corresponding to the various singular points being thus de-

fined, it remains to determine the values of y and z.

I first observe that, if we have a singular point corresponding to certain

I i i
will correspond to another sin-

values of x, y and z, the inverse values x' y' z

gular point, which I will call the reciprocal of the first. We in fact statel
that our system of equations does not change when we change x, y, z into -ix ,

i
and z' which was also easy to predict.

The values of x and y will be defined by the following pairs of equations:

(i),(3); (i),(4); (7),(3); (8),(4); (9),(3) or (4); (10),(3) or (4).

These equations show us that if _ is very small and can be regarded as an infin-

itesimal of the first order, y is very small if x is very small, and very large if

x is very large.

_293

We have on the other hand

,, ,,.__ (' -_).

If _ is an infinitesimal of the first order, x is an infinitesimal (or

infinitely large) of the same order; the same is true for y; the exponent

_,_in_(_ )is then finite; consequently z is an infinitely small (°r infinitely

large) quantity of the order a+c. I will distinguish among the singular points

that which is defined by x=T [solution of equation (i)] and by equation (3).

For this point, in fact_ y and z are zero.

Similarly, for the point defined by x=I [another solution of (i) ] and by
T

equation (4), and which is the reciprocal of the first, the values of y and z are

infinite.

We therefore need not concern ourselves with these two singular points in

the discussion to follow.
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Discussion

97. Here is the question which it remains for me to resolve.

In all I have 14 singular points, seven of which correspond to very small

values of x and y, and 7 of which correspond to very large values of x and y.

From another point of view, 7 of these points correspond to very small values

of z, and 7 to very large values of z. It is a question of knowing which among /294

the first 7 is that for which the modulus of z is greatest. (This will at the

same time teach us, since the values of z are reciprocal together as are those of

x and y, which among the last 7 is that for which the modulus of z is smallest.)

If the corresponding singular points are admissible, it will be these which

will define the circumferences

Izf=R, Izl=r (here we have R=_).
r

In order not to prolong the discussion by examination of too great a number

of different cases, I am going to make some particular hypotheses. I will assume

C o

I will likewise assume that the ratio- is nearly equal to the ratio of the mean
a

motions with changed signs_ that is, we have nearly (designating these mean motions
by n and n')

an _ cn r _ o,

The most interesting terms are in fact those which correspond to small divisors.

We then have nearly

Q

which shows that c and a are of opposite sign; for example I will assume c posi-

tive and a negative; as _ is greater than i, c+a will be positive.

Thanks to these hypotheses all values of x are real. This makes possible

a simple geometric representation which will permit the discussion to proceed

more easily.

in the following figure we represent each singular point by a point of the

plane whose rectangular coordinates are x and y.

I have given two figures (fig. i and fig. 2), the first representing the

quadrant of the plane between the axis of the positive x and that of the positive

y; and the second representing the quadrant between the axis of the negative x

and the axis of the negative y.

256



_r

o A

Figure i.

Figure 2.

The straight lines AS and A'S' have respectively for equations

!

The two branches of the curve C'B'DBP and QFAE'R' have for equation

Y- _(j+_'_x'

that is, equation (3); the twobranches of the curve

B'D'BCOREL and R'F'Q'

have for this equation

(4)
.7"----(,--',:.z',b_

The various singular points are represented in the figure by the following points :

A ................ equations (I) and (3) (x=_),
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B ................ (9), (3) and (4) [second equation (i!)]

C ................ (8) and (4) [(13)],

D ................ (7) and (3) [(12) negative root],
E ................ (i) and (4)(x=m),

F ................. (7) and (3) [(12) positive root],

R ................ (10),(3) and (4) [third equation (ii)];

and by the points A', B', C', D', E', F' and R', respectively, reciprocals of the
first.

It is easy to verify that if _ is small enoughthese points are well set
up in the _rder of the figure, i.e.: that the abscissae of the points
C'B'D'DBCFREE'R'F'are increased.

Let us comparethe values of z corresponding to these various points. We
first see that for the points of figure i _where x_O, y_O) z is real and positive
and that for the points of figure 2 (where x_3, y_O) the argument of z is equal

!

to (c+_w, and that of z c equal to (l+a)w. It remains to be seen how the modulus

of z varies. If we follow one of curves (3) or (4), the maxima and minima of Iz I

co_respond to the contact points of curves (3) and (4) with the curves

asleep/I _.

z _j_x_,e"-i-'_,_ -=) = co-st.,

that is, to the points C', D, F, A for curve (3), and to the points D', C, F' for

curve (4).

Here is how Izl varies.

1) When we follow curve (3)

At O' ......... IzI:0
From O' to C' . .... increases

At C' ......... max.

From C' to D ..... decreases

At D ......... rain.

From D to P ...... increases

AtP ......... Izl=_

AtQ .......... Izl=O
From Q to F ...... increases

At F .......... max.

From F to A ...... decreases

At A .......... I z I=0

From A to 0" . ..... increases

AtO" ......... Izl=_

2) When we follow curve (4)

AtP' ......... I=1=o

From P' to D' ..... increases

Ato .......... IzI=o
From 0 to L or to A' . increases
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At D' ........

From D' to C ....

At C ........
From C to O' ....

At 0 ........

max. At A' ......... Iz I:_

decreases From A' to F' ..... decreases

min. At F' min.

increases From F' to Q' ..... increases

Izl= At Q' ......... Izi: 

From this we conclude that the z

C, and that of point E is greater than that of point R.

of point B is greater than that of point

Similarly, the z of point D is smaller than that of point B, and the

of R is smaller than that of F.

z

We have seen that, the function F(z,t) not being uniform, it was necessary

to trace the integration contours on the corresponding Riemann surface whose num-

ber of sheets is ir_finite. In order to avoid consideration of this Riemann surface,

one can change variables. Let us in fact observe that the square F_ is a uniform

function of x and y and consequently the square of F(z,t) is a uniform function

of and

If we therefore agree to give z a determined value which we momentarily

considered constant, to each point of the plane of the x_there will correspond

only two values of F(z,t) equal and of opposite sign. It will then be advanta-

geous to trade our contours of integration on the plane of x .

Let us first give z_an initial value _ whose modules is equal to I. We

are agreed, in defining @(z), that the contour of integration along which we must

take the integral

@(z) =fF (z, t)dt

must reduce to the circle It i=l for values of z of modulus i.

i
For zC=_ we must therefore take for contour in the plane of the t the circle

i
itl=l and in the plane of the x_ the circle IxCl=l.

Here, therefore, is the rule to recognize if a singular point of 9(z) is

admissible. Let _i be the value of and _i the value of z which corresponds

to this singular point. We will assume, for example, that the modulus of _ is

smaller than I; we know equally well that among the singular points of %(z) half
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i
have their modulus smaller than i. We are going to vary zc in the following

manner: its argument must remain constant and constantly equal to that of _i

and its modulus will increase from l_il to i. In other words, points z

will describe a segment of the straight line A limited to the points Ci and

_J

lqJ i
For each of the values of z_ F(z,t), considered as a function of x , pre-

sents a certain number of singular points; for z_=_, two of these singular points

merge into one with _. When z describes the straight _ ine A, these two singular

points vary in a continuous and perfectly defined manner. When z attains the

final value _i, it may occur that the final positions of these two singular

IciJ i

points are either both inside or both outside the circle 121=1, and the con-

sidered point is then inadmissible, or that these final positions are one out-

side and the other inside this circle, and the point considered is then admissible.

The function F(z,t) is multiplied by a c-th root of unity when x_ is multi-

plied by a c-th root of unity. Let us therefore assume that for a known value of /299
i

z the point
I

_--=-y

i

is a singular point of F(z,t) considered a function of xU.

also for points
This will be true

We have seen that the values of x which correspond to the singular points of

@(z) are all real, and consequently have 0 or _ for argument. The corresponding

values of x c will therefore have -- for argument, k being an integer. Therefore
c

let _. be one of these values. I will be able to write
I

for argument and k being an integer._i having 0 or

If _i corresponds to a singular point of @(z) [that is, to two coalesced

singular points of F(z,t)], the same will be true for _[.
i
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I say that the necessary and sufficient condition for point _i to be ad-
missible is that the point _! be so.

i i
In fact, let us apply the rule: whenthe point z_describes the straight

line A, the two singular points first coalesced into _. will have _ and _' for
final positions; likewise, the two singular points first coalesced into _'. willl
have for final positioms

_i_ _ i_

• ¢ and _'e ,=

It is obviously sufficient,in order to demonstrate the stated theorem, to observe

that

I_l= _e--_- , Ix't=l_'e _ •

It will be sufficient to examine the singular points which correspond to real and /300

i

positive values of xc, that is, to points F_ E, R and A of the figure, and the
i

singular points which correspond to the value _ of the argument of x_, that is
c

to say, to the points D, B, and C of the figure.

Point E is inadmissible; in fact, the corresponding value of _i is

!

i

chen the point z_ describes the straight line _ the two singular points originally

coalesced into _. will remain real. To each of them will correspond a value of x
I

and of y, and consequently a representative point on our figure.

One of these representative points will then describe the straight line ES

and the other the curve EL.

One of the singular points will therefore remain fixed and equal to T and

will consequently have its modulus always smaller than i.

The initial value of Ci of z is real and positive; the straight line A will

therefore be a portion of the axis of the real quantities and the final value

q
__will be equal to i.

fql
The second singular point (which corresponds to the representative point

which followed the curve EL) has a real and positive value which I call _; we

must know if y is smaller or larger than i.

When this representative point describes the curve EL from E to L, the

modulus of z will continue increasing from a certain very small value to infinity;
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it will therefore pass once and only once through value i. It is a question of

2
showing that the corresponding value _ of x is smaller than i. To do so, it is

sufficient to show that when the abscissa x of this representative point reaches

the value I, Izl is greater than i.

Now we find that for x=l

+ a,lolpi I \

z =.yex-e-i--_ -_) =yo.

It therefore remains to demonstrate that y>l.

Now it is clear that

_ .,,J___,________B(.-+-t _"

Therefore _<i.

Therefore point E is inadmissible.

Q.E.D.

Point F is inadmissible; here even the straight line A will be a portion of

the axis of the real quantities since Ci will be real. The singular points o_ig-

ina!ly coalesced into _i will not remain real, but they will remain imaginary

conjugates; they therefore have the same modulus; it is therefore impossible

that when z attains its final value _=i one of these points is larger than i

and the other smaller than i in absolute value.

J3Ol

Q. E. D.

However, it will be useful for us to know if, when z attains its final value

i, the common modulus of these two singular points is larger or smaller than i.

If it is originally smaller than i, it will not cease being so except when passing

through the value i. It would therefore be necessary that, for an imaginary value

of x having modulus i, z have a real and positive value.

In the plane of the x let us therefore construct the lines of equal argument
of the function

x,,c , L:-'-_I.

These lines are represented in figure 3 at least in the only part of the

plane which interests us and which is a neighborhood of point O.
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The significant points are the point x=O_ corresponding to point 0 of

figure i, point x=_, corresponding to point A, and two points which correspond

to the points D and F. These points are in addition designated in figure 3 by

the same letters.

Among the lines of equal argument, the ones regarded as significant are re-

presented by solid lines. These are the axis of the real quantities on one hand,

and on the other hand, lines going from point 0 to point F and from point A to

point D.

The other lines of equal argument ending in either point A or point 0 or

both, are represented by dotted lines.
!

When the point zc describes the straight line A, point x describes the

curve in solid lines FO in our figure 3-

_1_J J'j_ _

-'" l t. ,'-"

\ -...
\,, \ ,,,. -....

",,, ./ J "

#

jJ

Figure 3.

We therefore see that the modulus of x will always remain very small and

that we will have

i_l<'-

Point R is inadmissible; in fact, when the point z describes the straight

line A, the two singular points originally coalesced will first remain real; the

two representative points will describe the two branches of curve RE and RF; when

the first of these points attains point E, the corresponding singular point will

coalesce with another; the two points thus coalesced will then separate and the

corresponding representative points will descri0e the curve EL and ES; in speaking

of point E we have seen that the final values of x@ are real and smaller than i.

Likewise, when the second representative point attains F_ the singular
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corresponding point will coalesce with another, then separate; the final values,

as we have seen in speaking of point F, are imaginary conjugates and smaller in
modulus than i.

We therefore have here no longer 2, but 4 final values; all four are
smaller than i in absolute value.

Q.E.D.

Point B is inadmissible. The two singular points originally coalesced

separate, but the corresponding values of x remain real. The two representative

points describe the branches of curve BP and BD' For the first, which describes

BP, the absolute value of x continues to diminish; it therefore remains smaller

than i; let us consider the second, which describes BD'; it remains for me to

demonstrate that although the absolute value of x increases it remains smaller

than I, while the modulus of z is itself less than i.

Now

To do so, it is necessary to show that for x=-l, Iz I>l; now, for x=-l,

I_I= IyF-

17[= --- >z (if _ is sufficiently small).

Point C is inadmissible. The two singular points originally coalesced

separate, x remaining real; the first representative point describes CO, the

second CB. For the first, Ixl constantly diminishes: its final value is there-

fore smaller than i. Let us examine the second singular point, which describes

CB. When it arrives at B, it merges with another singular point and again

separates; the two representative points will describe the two curves BP and BD';

according to what we have just seen, the final values of Ixl are smaller than i.

Thus we have not two but three final values, all smaller than i.

Q.E.D.

Point D is admissible. The two values of x remain real and the first re-

presentative point describes DB; having reached B, the representative curve forks

into BP and BD', and the final values of x are smaller than i, as we have just

seen.

The second representative point describes DB'; I say that the final value

of Ix l is greater than i. For this, it is necessary to see that for x=<l we

have Iz[<l; now, for x=-l,

(,+ _)'
[_]=[7[=; IY[=[3(,÷_,) <' (if T is sufficiently small).

Of our three final absolute values, two are smaller and one larger than i. There-

fore the point is admissible.

Q.E.D.

In sum_nary, of the six points BCDEFR, point D alone is admissible.
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The same is true for the six reciprocal points B'C'D'E'F'R': point D' alone

is admissible.

If therefore one of the eccentricities is sufficiently small, the other zero,

the orbit inclination zero, th_ major axis of the circular orbit larger than that

of the elliptic orbit; if the ratio-_ differs little from that of the mean

motions, it is the points D and D' which determine the radii of convergence r

i
and R=-.

r

In order to facilitate understanding of this discussion, I have constructed

a fourth figure in which I have represented the variation of the singular points

taking x for abscissa, if x is real, and Ixl if x is imaginary, and for ordinate

_I- I have nevertheless represented only those singular points which play a role

in the discussion. The straight lines shown by dots and dashes are the two axes

of coordinates x=0 and [zl=0 and the straight lines x=+l, Izl=l. The curves in

a solid line represent the variation of the real singular points, and the curves

in dots are that of the singular imaginary points. According to the conventions

made above, each of the points of these dotted curves represents two conjugate

imaginary singular points.

The various significant points are designated by the same letters as the

corresponding points of the other figures. In order to find the various final

values obtained upon leaving a given singular point, it is necessary to follow

the solid or dotted curves, always descending (since in the figure the axis of

the positive iz[ is directed toward the bottom) to the straight line Izl=l.

0 A __

..... T ................... C _E'-' ........ rl

i o _ ! \ /1_ i

I . II IX A \!I I \,
• w i
I.J i/,', X/ ii I \
!] "/ i / \11 I

.................................. -J

_. "r_ "rs'r.i'r_ Y, "r,

i

We thus find that
Figure 4.

For the point D the final values are _i' _2 and _3,

" _2 and'_3,B

C

F

R

E

T!

_2' _3 and _,

T1

'6''F6and_7'
II

_s and_7.

IT

TT

5T

TT

II
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I recall that Y5 represents two final conjugate imaginary values. We see

that of these final values, all except YI are smaller than i in absolute value.

Discussion of the General Case •

98. The limits which are imposed on me here do not permit me to repeat this

discussion in the more general case; however_ I may indicate in a few words the
manner in which it may be conducted.

When one varies the elements of the orbits in a continuous manner, the sin-
gular points of @(z) will also vary in a continuous manner. Let us assume that

one also varies the elements such that the orbits remain real ard intersect them-

selves at a real point, such that also at no time do two singular points of _ z)
coalesce. Let us consider a singular point of _(z); it varies in a contimuous

manner and, as we assume that it never coalesces with any other, we will be able

to follow it in its variations without fear of any ambiguity.

=

This granted, I say that if this point is admissible at a certain moment, it

will always remain admissible and vice versa, except in a case to which we will
return.

In fact, to say that the singular point is admissible is to say that among

the final values of x corresponding to this point, there are those whose modulus

is greater than i and others whose modulus is smaller than i. But it is important

to be more precise. In fact, in the particular case dealt with in the preceding

article, F(z,t) was a uniform function of z and x_, which permitted us to re-

present the singular points of F(z,t) on the plane of the x .

In the general case it is not the same and such a sample representation is

no longer possible. It is necessary to represent the singular points of F(z,t)
(considered a function of t) on a particular Riemann surface which I earlier

called S; this surface can be defined as follows: we have

all_/l \ t Irln'_"/" I 3,,)"z = _,e -d- t_ -_)yce--i-- _2 (z)

If we'regard z as given, this equation defines a relationship between x and
i i

y which an infinity of systems of values of x and y satisfies, or of x_ and y_;

each of these systems of values represents what we may call an analytical point.

One and only one of these analytical points will correspond to each of the points

of the Riemann surface, and vice versa.

When we vary z, this Riemann surface S also varies, since then the singular

points of F(z,t) are displaced. Let S O be what S becomes when z reaches a modulus

value i. On the surface S_u we will be able to trace a circle which I will call /307

CO and whose equation will be
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Ixl:lyI:l-

(In fact, if we give x an arbitrary modulus value i, we can always choose

a value of y likwise of modulus i, such that z has whatever value having modulus

that one wishes.)

This circle CO splits the Riemann surface SO into two parts.

I will call R 0 that of the two regions which contains the neighboring points

!

of CO and for which Ixl<l, and I will call R0 the other region.

Let us therefore assume that we have the straight line A of the preceding
i
C

article follow to point z and that we study the variations of the singular

points of F(z,t); when z varies, these points are displaced on the surface S at

the same time as this surface S itself varies. Two of these points first coales-

ced into one (which is a singular point of _(z)) separate; when the modulus of z

reaches the value i and S is reduced to SO they reach two final positions on this

surface, (The discussion in the preceding article has shown us cases where one of

these singular points splits into two others; then there are more than two final

positions, but what I am going to say remains applicable.) If all these final

positions belong to the same of the two regions determined on the surface SO by

the circle CO , the corresponding singular point of @(z) is inadmissible; in the

opposite case, it is admissible.

One sees the nuance which distinguishes this statement from that which I had

first given and which was proper in the particular case of the preceding article.

The bearers of two points can become the one greater and the other smaller than

i in absolute value., and these two points nevertheless can belong to the same

one of the two regions defined above if they are not part of the same sheet of the

Riemann surface.

This granted, I say that when we vary the elements of the two orbits, a sin-

gular point at first admissible cannot in general become inadmissible or vice

versa. In fact, let us consider the variations of the surface SO and of what we

have called the final values. In order for a singular point to in fact cease

being admissible or to become so, it would be necessary for the final corresponding /_C

value to escape the circle CO in order to pass from one of the two regions to the

other. Now what is the significance of the equations of this circle CO

fxl:lyl:l

They signify that the two eccentric anomalies are real. To each point M on

the Riemann surface S) and in particular on the surface SO , there corresponds

upon the two orbits a pair of points P and P' defined by the values of the eccen-
tric anomalies or what goes back to the same thing by x and y.
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If point M is on the circle CO, the points P and P' are real. The point M can

be singular only if the distance PP' is zero, or if one of the points P and P'
is at a zero distance from the Sun. This second circumstance cannot occur if
the points P and P' are real; nor the first if, as we have assumed, the two
orbits do not intersect themselves at a real point.

It is therefore impossible that a point of the circle CO be singular: that

is to say, one of the final values passes over this circle; that is to say also
that finally a singular point of @(z) loses or gains the character of admissibility.

However, there is a case which I must yet speak of and where this reasoning
I

would be found at fault. I assumethat wemake the point zc follow the straight
line A and that we study the corresponding variations of the singular points of
F(z,t). In the beginning, two of these points are coalesced together and conse-
quently coalesce to a singular point A of @(z); they can separate: let _ be one
of them; it may occur (and we have seen examples of this in the preceding article)
that, for a certain value of z, the point _ coalesces with another singular point
of F(z_t) (generally different from that with which it first coalesced) and conse-
quently with a singular point B of _(z). It then separates from it such that the
singular point A admits not two but three final values.

I will say in this case, for brevity in language, that point B is subordinate
to point A; in order for this to be so, it is necessary for the z of point B to
have the sameargument and modulus more closely approaching one than Izl of
point A.

Then let A and B be two singular points of @(z) and let us assumethat their
z first have different arguments. Let us v_ry in a continuous manner the elements
of the two orbits and consequently points A and B; if at a certain momentpoint B
becomessubordinate to point A, it may occur that at this moment, in exception to
the general rule formulated above, point A becomesadmissible or ceases to do so.

Let us see how this circumstance can occur. Let us first observe that the
values of x which correspond to the singular points of @(z) are furnished us by
a certain numberof algebraic equations. If the two points A and B are thus de-
fined by one and the sameirreducible equation, Y will say that they are of the
samenature and, in the contrary case_ that they are of a different nature. One
can see without difficulty that if points A and B are of a different nature, point
B can becomesubordinate to A without point A being able to lose or gain the char-
acter of admissibility.

I nowassumethat points A and B are of the samenature. If point B is in-
admissible, it can still becomesubordinate to A without this last point either
becomingadmissible or ceasing to do so. If_ on the contrary_ point B is admis-
sible, it will occur in general_ at the momentwhenB becomessubordinate to A,
that A will cease being admissible if it was soj and will becomeso if it was not.
In addition_ point B still retains its character of admissibility or inadmissibility.
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The preceding considerations therefore furnish us the means to recognize

which are admissible by varying the elements of the orbits in a continuous manner;

and by following the variations of the singular points. This is so provided we

restrict ourselves to varying the elements in such a manner that two singular

points at no moment have a z of the same argumen% so as to avoid the necessary

discussion of knowing if they are really subordinate one to another, or provided

that we do not restrict ourselves to this condition in resigning ourselves to

making this discussion.

c
We can vary not only the elements of the orbits, but the ratio _ forgetting

for an instant that it must be commensurable_ which we have assumed only for a

particular end which is in no way related to the discussiom of the admissibility

c must nevertheless remain real and pass
of singular points. This ratio

through zero nor infinity in order for what we have just said to remain applicable.

It therefore suffices to know w_ich are the admissible points for certain

values of the elements so as to be able to apply the preceding considerations.

_at I have said in the preceding article for a particular case therefore seems

sufficient for us; in this particular case_ however_ certain singular points reduce

to zero or to infinity and I have left this to one side in the discussion.

It is for this reason that I have still some points to add. Let us first

assume that the inclination remains zero_ the two eccentricities being finite.

Let a

tang_ = x, tang_ = z'.

The singular points of F(z,t) will then be defined by the following equations:

! !

_ _ _ -_ y= t _ _,

= [_x _ _"Y--Z'?,

(, -- _'y),
(, _ _._)i : _o_-

(3)

Curves (3) and (4) are of the third order; in order for them to be real, it is

necessary and sufficient that the major axes of the two orbits coincide_ i.e.,

that the difference _-_' be equal to 0 or w.

Let us assume _-_'; curve (3) will present a double point

i

If T' is very small, the curve will present three branches: the first, which

I will call YI_ will differ little from the branch B'DBP of figure i; the second

which I will call Y2' will pass through the origin and through the double point.
It will first be asymptotic to the axis of the negative x and will deviate very

little from this axis; after having passed through the double point_ it will

differ little from the branch AO' of figure i; the third; which I will call y3 _
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is asymptotic to the axis of the y and at first differs very little from the
branch CRAof figure i; it then passes through the double point and deviates
very little from the axis of the x to which it is asymptotic. I will hence-
forth say that two points are reciprocal whenwe pass from one to the other

I i i
changing XtOx_ y to _, z to --zand _-I to -_-i. The two curves (7) and (4)

are then reciprocal to each other. If _=_' and consequently our curves are real,
this definition does not differ from that of the preceding article.

Wehave as singular points:

(i) The intersections of curves (7) and (4) differing very little from points
B, B', R, R' of figure i and which I may always designate by the sameletters. We
have seen that they are inadmissible.

i
(2) The intersections of x=_ and curve (4), of x=--and curve (7), differingT

very little from points E and E' of figure I; they are thus inadmissible.

(7) Three points situated on curve (3) and differing very little from points
D, F and C' of figure i; only the first is admissible.

(4) Three reciprocal points of the first situated on curve (4); what differs
little from D' is alone admissible.

(5) A point defined by equations (7) and (5) situated on the branch Y2 and
reducing to y=Oand x=-T for T'=O. This point, of which there was no question in
the preceding article, demandsa special discussion. This discussion would prove
that this point, which I will call T, is admissible; the two singular points of

F(z,t), at first coalesced with it, separate when z describes the straight line
A and are first imaginary conjugates ; then they coalesce again at only one point,

which corresponds to point D, and separate only to again become real. We see that

the final values of T are the same as those of D; therefore T is admissible, as
is D.

(6) A point T', reciprocal to T and consequently admissible as it is.

(7) The double point x=_ and y=_', which I will call U; through this point
pass two of the branches of curve (3) and the two straight lines x=T and y=T'

i

Four final values correspond to this point, for when zc describes the straight

line A, four singular points of F(z,t), at first coalesced into one, separate in

such a way that the four representative points describe respectively the two

branches of (3) and the two straight lines x=_, y=_'; among these final values

three are smaller than I in absolute value or, more precisely, belong to the

region R0 of the Riemann surface SO . The fourth final value, that which corre-

sponds to the branch of curve Y2' belongs to the other region. The point is
therefore admissible.
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(8) The point U', reciprocal to U, that is to say, the double point of (4),
will be admissible for the samereason.

(9) There still remain the points of intersection of the straight line
y=_' with curve (4) which I call V and W' and those of the straight line y=l

with curve (3) which I call V' and W, and to which I will join the two reciprocal
points one from the other

which i will call X and X'. Point X is inadmissible and the two final values
corresponding respectively to the two straight lines x=_ and y=_ belong to the
region RO.

Let us pass to point V (that of intersections of y=T' with (4), which is
i

very near the origin); when the point z_ describes A, the two representative points
corresponding to the two singular points which separate follows: the first from
curve (4) to point R and the second from the straight line y=T' to U. The points
R and U are therefore subordinate to V, and V admits as final values the total of
the final values of R and U. All those of R belong to R_; those of U which are
admissible belong to the two regions. Therefore the poiUntV is admissible but
it ceases to be so whenthe difference _-_' becomesvery small instead of being
zero. In this case, in fact, R and U cease being subordinate to V, and the only
final values which V retains are, on one hand, a final value little different
from one of those of R, and another little different from one of those of U (which

correspond to y=_') and which both belong to R0. i

Finally, W is inadmissible (it is that of the intersections of (3) with y=_
which is near the axis of the y). In fact, F and X, whose final values belong to

R0, are subordinate to this point.
In summary,if the inclination is zero_ the difference _-_' very small, the

eccentricity _ small, and the eccentricity q0' very small with respect to _, the
only admissible points will be D, T, U and their reciprocals.

Let us now assumethat the inclination is not zero_ but very small.

If we write that the distance between the two planets is zero_ we will no
longer obtain, as in the preceding case, two distinct equations (3) and (4), but
one unique equation

O(x,y)=o

which will represent a curve of the sixth order if we consider (as in figure I)

x and y as the coordinates of a point in a plane.

This curve decomposes into two third-order curves (3) and (4) when the in-

clination is zero; in order for them to be real, it is necessary and sufficient

that the major axes of the orbits be perpendicular to the line of the nodes.
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If the inclination is very small, the singular points will be:

(i) Points very little different from E, D, F, C, T, V, W, X and their
reciprocals; I will designate them by the sameletters ; it is clear that D and T
are alone admissible with their reciprocals.

(2) Twopoints BI and B2, very little different from B; two points RI and

R2,very little different from R and their reciprocals. All inadmissible.

(3) Nine points little different from U, namely x=_, y=T'; two intersections
of x=T with ®=0, two of y=T' with @=0, four points of ®=0. A special discussionwould be necessary.

Having thus recognized which are the admissible points, it remains to see
whichof IzlitclosestiSproperto l.t° retain, that is, to see which corresponds to the values

/314

If the eccentricity which corresponds to the larger of the two major axes and

the inclination are small with respect to the other eccentricity and if the dif-

ference _-m' is small, the point which is suitable for us is point D.

Forced to restrict myself, I stop this discussion, which I have only

succeeded in outlining. However_ it seems to me that the importance of the

subject can tempt more than one investigator; beyond this discussion, he would

have to give a practical and rapid method of solving the algebraic equations to

which we are led in considering the smallness of certain quantities, and we can

content ourselves most often with a mediocre approximation. His task would also

be greatly facilitated by a complete analytical study of the function @(z) and its
different determinations.

Application of the Method of Darboux

99. Let us now assume that through the preceding discussion we have determined

the singular point of @(z) which is suitable to the problem, and that consequently
we know what are the two circumferences

F

which limit the domain where @(z) is developable in a Laurent series and are the sin-

gular points situated on these circumferences. In general, there will be only
one on each of them.

Therefore let z0 be the singular point found on the circumference Izl=r.

Let x0, Y0 and tO be the corresponding values of x, y and t. We easily see

that x0 and y0 are perfectly determined by the algebraic equations which we have
discussed above; on the other hand

! sSn_f !

,.=
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is not entirely determined, but is susceptible of c values which I will call /315

to, jto, jlto ..... jc-'tu,

j being a c-th primitive root of unity.

Let us apply the method of Darboux to the development of @(z). To do so, it

is necessary for us to know how this function behaves in the neighborhood of the

singular points z=z O.

When z is very near Zo, the function F(z,t) admits two singular points tI and

t2 very near to; likewise it will admit c-i other pairs of singular points

.t j2tl j2t2 ' c-i c-itl and 3 2' and ..., j tI and j t2

respectively very near

jto, jito .... , j_-lto.

The integration contour C along which we must calculate the integrals

r fF
4,(z)-= _-_,j (z, t)dt

must pass between the points tI and t2 and similarly between the points jt I and

Jt2, .... In addition, we will be able to assume that this contour presents the

following symmetry: it will be formed from c arcs CO, C I, ..., Cc_l, and we will

pass from the arc C O to arc Ck, changing t to tj k, as

F(z, tj_)=j-z-F(:, t);

the integral taken along the c arcs CO, CI_ ..., Cc_ I
will have

• (z)= ai_ F(z, t)dt.

will be the same, and we

The arc CO, which is our new path of integration, will then pass only between

the singular points tO and tl; in addition, let us decompose the arc CO into three
[r!

TT

partial arcs C_, CO and C O; I will call _ and _ the extremities of the arc C_,

and y those of CO, and y and S those of C O" I will assume that it is C_ which
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passes between t I and t 2 and that, when z tends toward Zo, none of the four

points % 9, _, 5 tends toward to, so that these four points are at a finite

distance from tI and t2.

Our integral taken along C O is the sum of three others taken respectively

along C_, C'6 and C" O. The first and third remain holomorphic functions of z in

the neighborhood of the point Z=Zo, since the points t I and t2 are at a finite

TT!

distance from the arcs C_ and C O" It is therefore only the second integral,

taken along C" 0 which admits z0 as a singular point; it is therefore the study of

this second integral which will let us know the behavior of the function @(z) in

the neighborhood of z=z O.

Let us therefore see how the function F(z,t) will behave in the neighborhood

of z=zn, t=t n. This depends, as is well understood, on the nature of the singular

point _onsid_red. I will first examine the hypothesis that this point is one of

those which we have designated by D, F, T, C and by the same letters primed, or

in the case where the inclination is not zero, even one of those which we have

designated by B I, B2, RI, R 2 or their reciprocals. This is the most important

hypothesis, for we have seen that, if the inclination and one of the eccentricities

are very small, it is the point D which is applicable for us.

In this hypothesis IF(z) ]-2 can be developed in increasing powers of z-z O and

t-t o •

I therefore have
I

F (z, t) =
¢_(_, t)'

/316

designating by _ z,t) a series developed in increasing powers of z and t.

I will assume that z is sufficiently near Zo, and that the points which I have

just called _ and _ (extremities of C_) are near enough to tO (although their dis-

tance at this point tO has been assumed finite) for the series @ to converge for
t=_ and for t=_.

What will now be the form of this series 4? In the first place, for

we must have
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Therefore, if in _ we have z=z0, the first term of the development of

will be a term in (t-to)2. It follows from this and from a theorem of

Weierstrass that wehave identically

¢ = [(_ - h_,+ k]+,,

where _1 is a series developed in powers of z-z 0 and t-t 0 and not vanishing for

Z=Zo, t=to; where h and k are two ordered series in powers of z-z 0 reducing re-

spectively to t O and to 0 for z=z 0 (Weierstrass, Abhandlungen aus der Functionen-

lehre, Berlin, Springer, 1886, p. 107 and following; also see Poincar$, These in-

augurale, Paris, Gauthier-Villars, 1879).

We can then set

J}i7

--9_=0, whence F(z, t): _(t--h)'+k'

8 being developable in increasing powers of z-z 0 and t-t 0 •

Let us proceed to a second hypothesis which will be the one where the singular

point z0 will be i of the points B, R, B' or R' for zero inclination. We would then

see that F(z,t) is still of the same form; however, there is one difference. Under

the first hypothesis, k is divisible by z-z 0 but not by (Z-So)2; under the second,

k is divisible by (z-z0).

The last hypotheses which remain for us to examine are those where we have

i i

either Xo=T or 7' or yo=_. In this case, it may be useful to make a change

of variables.

Let us first assume

!

z,=: or _' y,_:', yo >}"

For new variables we will then take no longer t and z, but x and z; in the

neighborhood of the singular point considered, y can be developed in increasing

powers of t-t 0 and z-z 0 and consequently in those of x-x 0 and z-z O. The quantity

_]-2 is likewise developable in powers of z-z 0 and x-x O.

If therefore we set
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+ _-[tv(-, ,)]-,, (1)

will be developable in powers of x-x 0 and z-z 0 and we will have

_i_¢(z)=f _ {z-_)u-_)=fH(z,.)ax.

The function H(z, x) under the sign f presents a singular point only if @=O.

In order for _(z) to present a singular point, it is necessary that two of

the singular points of H(z, x) coalesce. Now this will occur only if we have at

the same time

°

/318.

The equation _=0 corresponds to the curves (3) and (4) of the preceding

article (or to the curve of the sixth degree which replaces them when inclination

is not zero). The equations _=d___=O correspond to the singular points studied in

dx

the first two hypotheses.

From which this consequence: point E and its reciprocal are for the function

@(z) only apparent singular points, and we need never concern ourselves with them.

Let us assume

z0_--, _re<>__ n
)'0= _ or _,.

We then will take y and z as new variables; we will find, reserving to

the significance which was given it in equation (i),

,i=,(z)=f_,_ (z- ,')(,-,'z_.,+ ,,,

From this we would conclude that the points defined by the equations

I

y0 = - or ¥, 4/= o
T I

d_
(and for which we do not have at the same time _-_=0), i.e., the points V, W and

their reciprocals, are for the function _(z) only apparent singular points.

In the case where we have at the same time

! I

zo -= ": or _' Y' = _'- or _ '

the choice of change of variables,which can in addition be made in an infinity of

ways, is more delicate. Here is how we can make this choice.
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We have

nsin_/ I \ csln_/ I "_

Zo = :{ _ L_-_') y{ e--i--k_..-Y').

Let us set

,.,,,,, -.,o+(, )

" "-' _'"{-' -,r) '_''_" '

Then x will be developable in powers of _, and y in those of _; we will have

x=x 0 for _=0 and Y=Y0 for _=0. On the other hand it will follow that

whence

_o

In general, F(z,t) and t will be functions developable in powers of { and

[there would nevertheless be an exception in the case where the inclination is

zero and where we would have

or as well ! i

Xo = _, Yo = _;

this point x=% y=T', which we have called U, as a double point in fact belongs

to curve (3); this case would merit special discussion].

Taking z and _ for independent variables, we therefore have ¢(z)=f

?(z, _)dg qc (z. _) being developable in powers of _, z-z 0 and z_-z O- _, which

permits us to write

_i and 92 being developable in powers of { and z-z 0.

The first integral is a holomorphic function of z in the neighborhood of

the point Z=Zo; as for the second, it is completely of the same form as the inte-

gral _ ndt
J

y

v'_t--h)_ k

which we have been led to consider under the first two hypotheses. We must there-

fore conclude that the points
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are for the function _(z) true singular points and not only apparent ones.

One might be astonished at first glance at the difference between singular

points such as E_ V, W, etc._ which are only apparen% and points such as x=T,
y=T', or such as D, etc._ which are true singular points.

Their origin appears completely the same; however we obtain these points by

writing that two of the singular points tI and t of the function F(z,t) coalesce.
But let us examine the matter somewhat more closely. Let us give z a value very

near z _ such that the two points t_ and t_ are very little different from eachO ±
other, and let us study the behavior of th_ function F(z,t) in the neighborhood

of these two points. The difference between these two cases is then very great.

First Case. The point z0 is a point such as D or x=% y=Tr; i.e., a true

singular point of F(z).

J321

Then two values of F(z,t) are exchanged when we turn about point tl, and these

two same values are again exchanged when we turn about point t2. If we construct

a curve taking t for abscissa and F(z,t) for ordinate, this curve will vary naturally

when we vary z, and for z=z 0 it will have a double point.

Second Case. The point z0 is a point such as E, i.e., an apparent singular
point of @(z).

Then four values of F(z,t) are exchanged when we turn about tI and t2, namely

the first with the second, the third with the fourth when we turn about tl, and
the second with the third when we turn about t

2"

Let us therefore construct the Riemann surface relative to the function F(z,t),

that is to say a Riemann surface having as many sheets as this function F(z,t)

has determinations. In the first case, the order of connectivity of this surface wil_

be lowered by two units when z becomes equal to z_; in the second case it will re-
U

main the same. This is the true reason for the difference between the two cases.

This circumstance that certain singular points are only apparent may con-

siderably simplify the discussion of the two preceding articles if applied

carefully.

i00. Nothing is now easier than to determine the behavior of the function

@(z) in the neighborhood of the point z=z O.

We have in fact
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f 8dtq'(z) = q_t(z)+ ai--_, (t t __ h ), -,-')c"

@i(z) remaining holomorphic for z=z 0 and the integral being taken along C"0"

As 0 can be developed in powers of t-t 0 and z-z 0, and h in those of z-z 0,

we can write

O= Oo+ 6,(t--h)+ OTi(t--h)"+'"+Oa( t-h)n+ ....

such that setting

[" (t--h)ndt

it follows that

,I,(L) = ,P,(L) + _O.J,,.

On the other hand,

¥ dt_i=Jo= vtt t __ h ), _t_k

--h 4-v/(_--h)'+ k

= I°g_-- h + (([3 hf+k

From this we will conclude (observing that the path of integration passes

between tl=h+_k and t2=h-_k) that

_ i+t Jo = _o(Z) + log(z -- zo),

Xo(Z) being holomorphic for z=z O.

In the case where k would be divisible by (z-z0)2, it would be necessary to

say 2 log (z-z 0) (second hypothesis of the preceding article) and not log (z-z0).

It then follows that

Therefore J
n

we were to set

(t--f_)dt = holomorphic function of z,

_ti_Jt= (V/___h),+k

n1.+k(n--,)S.-, = holomorphic function of z.

remains holomorphic in z if n is odd. Now if n is even and if

(n--z)(n--3)...,
1

"'ffi n(n--2)..._
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we would have

_l

kn(Z ) being ho!omorphie in z.

Therefore it finally follows that

,(,)='_" 0,.(-J)-_nl_g(_- -0)+*,(-),

_2 remaining holomorphic in z for Z----Z0 .

I can then still write

• (z) = ¢,(z) + ¢,(z) Iog(z -- z,),

_2 and _3 remaining holomorphic for z:z O.

We have

Ca(z) = Y.Aa.+b,c_+az".

If therefore

and if

(* --Zo)h log(,; --zo) = '_y,,,h`;',

for very large n we will have approximately

Aan+b,cn+d = _o ya,O -t- 01 "f_,j -_-. . .-,- Oe y,,,i ,.

In general_ we will be able to content ourselves with taking the first term

00,0 -- l

_o7,,,o= '_i_ n_-_'

00, 0 being the value of e0 for Z=Zo_ or even that of @ for Z=Zo, t=t O.

Therefore

Now if I call A the square of the distance between the two planets, we have

F(z, t)=

,If

eo,o= _ WN'

/323
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d 2 A

on the condition, of course, that we make t=t0, z=z 0 in _dt2.

What I have just said is applicable to the first and second hypotheses of

the preceding article. If we assumed

! !

x0= _ or _, 7o = _' or _,

an analogous method would be applicable since in this case we have reduced _(z)

to an integral

which is of the same form as /324

o dtV'(t- ^? + k

The coefficient A which we have just calculated is that which enters the

mlm 2

0 of the perturbative function. We have, in
development of the principal part of F I

fac% set

F°I : Z Am,m, e ¢---_(m,l+m'l'_.

o
It would now be possible to take account of the complementary part FI-F _ of

the perturbative function. Let us therefore set

then

Ft = Z Bm n, e ¢.----i'¢m, I+m, I')t s

d

F'(z, t) = Flta't-_c-tz -F,

•_i,_.'(:) =fv'(., t)dt.

n

If we assume ml:am+b and m2:cn+d, then Bmlm2 will be the coefficient of z

@'(z) just as A was the coefficient of zn in @(z).
mira2

in

The function F'(z,t)-F(z,t) has no other singular points than those of the

straight lines

! !

z_---_, x---- _ y="=', y---- _-
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The function }'(z)-9(z) will therefore have only four singular points, namely

-' or !
--,

From this it results that, if the singular point which is proper for the problem

is not one of these four points, that is to say under the first two hypotheses of

article 99 (which is the most ordinary case), the difference B -A will
ml% mlm2

be negligible compared to A
same as that of A . mlm2

mlm 2

and the approximate value of B
mlm 2

will he the

If, on the contrary, the singular point z0, which is proper for the problem,

is one of these four points, it will be necessary to consider the difference B

-Amlm2 , which however presents no difficulty.

Application to Astronomy

/325
mlm2--

i0!. Most often we will be able to content ourselves with a rather rough

approximation; what is in fact proposed is to recognize if certain terms, whose

order is very high but which in consequence of the close commensurability of the

mean motions are affected by very small divisors, if these terms, I say, are or are

not negligible. More often they will be, and it will suffice to have an idea of

their order of size.

As an example I will take the celebrated inequality of Pallas.

study it we must calculate by taking

a=2, b=t, c=--,, d=o, d=8,

In order to

from which

nit: 17 , rrt2=-- 8.

It appears that we might attempt to again find in this way the result of Le Verrier.

Application to Demonstration of the Non-Existence of Uniform Integrals

102. But this is not the principal aim which I have proposed in undertaking

the work. We recall that it is to fill the gap which I indicated at the end of the

preceding chapter in the demonstration of the non-existence of uniform integrals.

In article 85, I established in effect that which follows. Let

F 1 _--- Y. Bmlml¢¢-l!m_l+msl')_

B depend at the same time on the two major axes, of the two eccentricities ti:e
m1_2

orbits' inclination, longitudes of the two perihelions (measured from the node),

that is to say seven variables.
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Let

a, c and n being integers, a and c first among them and of opposite sign. Let

us give the two major axes determined values chosen such that the ratio of the

c will depend on only five
mean motions is equal to -- • The coefficients Bmlm2a

variables. As in the preceding chapter, let us set

D. = Ba.,c,,_." ;

D will depend on six variables which are the two eccentricities the longitudes of
n

the perihelions, the inclination and _.

Thus, if there existed a uniform integral there would be a relationship among

six arbitraries of the quantities D and the various quantitiesn

D_,, ..., D-l, Do, DI, D,, ..., D,, ...

could be expressed as functions of only five and not six variables.

Now we have

@'(z) = ZBa,,,c,,'.

and consequently

_'(_0 = _:I_,,z..

If there were therefore a uniform integral_ the coefficients of the development of

@'(z _) would depend on only five parameters.

In applying the rules of the preceding articles, we would find that for very

large n, we have approximately

D,,= +_i+_+ ....

One would then see without difficulty that if the D n are expressed by means of only

five variables_ the same must hold for

E,, E,,_3 "°'I

and consequently, the _.. depend on only four variables. One would recognize after-
l

ward that this is not so.

This was my first plan but it is simpler to operate otherwise.
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The singular points of @'(z _) obviously depend only on the coefficients

Dn: they should therefore depend on only five variables.

Let

be six singular points of @'(z); the corresponding singular points of @'(z {) will
be

ZI _! Z 6

and they will depend on { and on our five other variables, eccentricities, in-
clination, longitude of the perihelions, which for the moment I will call

If there were a uniform integral, they would need only depend on five variables
and the functional determinant

C'-,

would have to be zero.

But this determinant is equal to

,_(_, z: ..=,)• f \+, _' ---,_,,

Now z is not zero nor is _ infinite; one would therefore have to have

,,¢+_.,,+_,,. +,)
\_l ,'It • • I _II

+(",, ": .... , =s)
_=0.

In other words, pairwise the ratios of the singular points of ¢'(z) would have to

depend on only four variables, which I will call _i' _2' _3' 84" Now these singular
points are of two types.

We have first those which are given us by the equations

! I

z:'= or _' Y:'=' or _'

mllnCP (I \ c sla'tlP'/I '4

I call them Zl, z2, z3 and z4.
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Wesee immediately that Zl, z2, z3 and z4 depend on only two eccentricities

that is to say on • and _';

z 1
The ratio -- would only depend on our four variables _i' _2' _3' _4; now this

z3
2

ratio is equal to zI. Therefore zI and similarly z2, Zy z4 would depend only on

the four variables _i"

Therefore it would be so of _ and _', which are manifestly functions of

zI and z2.

Let us proceed to the singular points of the second kind, which are furnished

us by the equations
d_

A -----o, _ --_.o.

When we take x and y as variables in these equations, they become algebraic.

The equation £=0 then defines, as we have seen, a curve of the sixth degree which,

for zero inclination, divides into two third-deg ree curves (3) and (4);if the in-

clination is zero, we can deduce from the equation __dA=-Ocombined with A=O, two others,

which are equations (5) and (6) of article 96. dt

Let z0 be one of the roots of equations

(i)
A----_¥ ----o,

Z0 Z0
and consequently z0 would depend only on the four variables _i"

the ratios Zl, Z3

T _r ! I!

If therefore zO, zO, z0 are three roots of equations (i), Zo, Zo, Zo, T and T'

would depend only on these four variables, such that the functional determinant /329

_('_, _',Zo, :_, "_

is zero. Let us assume for example that _i and _2 are the two eccentricities;

T will depend only on _i and T' on _2' sucre that this functional determinant is

equal to

d_ d_' O(zo, z'o, z_)
d=, d=l #(i, _, _') '

since the last three variables are the inclination i and the longitudes of the

perihelions • and _'.

We would therefore have
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a( i, _, w') =o,

which would mean that the roots of equation (1)(when we regard the two eccentric-

ities and consequently _ and T' as constant) and depend only on two variables

It remains for me to demonstrate that this is not so.

103. Let us begin with the case where inclination is zero. In this case,

the roots of equations (i) depend only on the major axes, the eccentricities and

the difference _-m'. If we regard the major axes and the eccentricities as constants

as we have just done, these roots will depend only on the difference _-m'.

In recal!ing what we said in article 85 and in reasoning as we have just done

in the preceding article, we would see that in order for the Problem of Three

Bodies in the plane to admit a uniform integral (other than those of vie viva and

area), it would be necessary that these roots not depend on m-re' and that they

remain constant when the major axes and the eccentricities themselves remain con-

stant and the inclination zero.

Now it is clear that this is not so, for z0 is real when _-m' is zero and
imaginary, in general, in the opposite case.

Let us now return to the case where the inclination is not zero. /33o

Let us enumerate the singular points given by equations

da
• ._o, _¥----o. (1)

To do so, let us assume the inclination to be very small; we will see, in referring

to what has been said in article 98, that there exist:

(i) Eight singular points little different from D, C, F, T and their recip-

rocals;

(2) Eight singular points of which two differ very little from B, two others

very little from R and two others very little from each of their reciprocals;

(3) Four points very lit%le different from U (x=T, y=T') and in fact, when

the inclination is zer% the two curves A=0, d--A=Ohave a double point at U;

dt

(4) Four points very little different from U' (x=_ y=_,).
T T

In all, 24 singular points.

We may arrive at the same result in a different manner.

We see that
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x'y' _= P

is an integral polynomial of the sixth order in x and y, such that the equation

P=O

is that of a curve of the sixth order which divides into two others, (3) and (4),

when the inclination is zero.

dA 0
On the other hand, the equation _-_= can be replaced by the following:

, dP t" dP
Q= cx_(I --t-':t)(y--1:')(|--': y) _ -aY (x +x't)(a"--_:)(I --_:x) _ =o.

This equation Q=O is that of a curve of the ninth order, and the singular points

will be the intersections of these two curves, less those which are rejected at

the origin or at infinity.

The curve P=O admits the origin as a double point and the axes as double

asymptotes; the curve Q=O admits the origin as a triple point and the two axes

as triple as_nptotes.

But there is more. We may note that P is the sum of three squares, such

that I may write

P = U] + U] + UI = XUi,

/331

with

U = Axty _- Bxy t + Cxy + D_ + Ey.

On the other hand, we may set

dU
V = x _ll -- U _- Ax'y-- Ey,

whence

dP
x-_x =._,XVU + P.

In considering P=O, we then arrive at

Q = a cxy(, _ _')( r - _')(, - _'y)x(A_:- E_ U
-- 2aat'!F(l + :'t)(z -- "_)(I _ ._z) X(l:_Itt -- D)U,

so that in suppressing the factor 2xy the system

P = Q =o
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can be replaced by the following :

R = e(z-+-. -.- _ "---') (,-- -')') X¢Ax'- E)U
-- a (, -+---_) (x -- ":)(t -- -x) X ( l_y; -- Dj U = o.

The curve R=O is only of the seventh order; it no longer has only a simple

point as origin; it admits as asymptotes the two axes, two straight lines other

than the axis of the x and parallel to this axis, two straight lines other than

the axis of the y and parallel to this axis_ and one straight line not parallel to
the axes.

The two curves R=O and P=O have 42 intersections in all. Among these inter-

sections there are two at the origin. Let us see how many there are at infinity
in the direction of the axis of the x.

The curve R has three asymptotes parallel to the axis of x, among which there

is this axis itself; curve P admits this axis as double asymptote; in general,

this would make seven points of intersection. In general, in fact, if there is

a double asymptote, there is a "point of retrogression at infinity". This is not

so for the curve P, but it presents two distinct branches of curves touching at
infinity, which gives not seven, but eight points of intersection.

We therefore have at infinity eight points in the direction of the axis of

the x, and eight in that of the axis of the y.

There remain then

_a--_--8--8--2_ singular points.

This granted, is it possible that the z of these 24 singular points depend

on only two variables? Let us call ?i and _2 these two variables. We can choose

a third Y3 such that i, _ _' are functions of YI' _2' _3" Then, when we vary _3'

the two other variables _i and Y2 remaining constant, the z must not vary.

One has by hypothesis
d_

• =o, d--i =o.

Differentiating the first of these two equations, we find

dA dA dA
--d-idr+ _lz d* + _ d;,, = o.

d&

Now _=0 and on the other hand dz would be zero since z was not varied. It

would therefore result that
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dA
_0.

d'[,
(2)

Let us see what this equation indicates. If we vary _, the curve A=O

(or what goes back to the same thing, the curve P=O) varies; let us consider

the curves)

dA

A -+- _ dy3----- o,

infinitely little different from P:O; I will call it curve P'. Equation (2) would

signify that this curve P' would have to pass through the 24 singular points.

Now these two curves P and P' are of the sixth order; they therefore cannot /33_3

admit more than 36 points of intersection without being identical.

They have four at the origin where they both have a double point.

They admit the axis of the x as double asymptote, which makes (bearing in

mind the remark made above on the subject of the nature of this double asymptote)

eight intersections at infinity in the direction of the axis of x. There are

likewise eight in the direction of the axis of y.

This would make in all

2_ +4+ 8+ 8 =.14 intersections.

The two curves would therefore have to coalesce.

Thus, if we were to vary _3' the curve P=O need not vary.

Let us interpret this result.

Let us consider the two ellipses described by the two planets. These two

ellipses will be invariable in size and form since we have agreed to regard the

major axes and the eccentricities as constants, but when we vary i, m and _'

these two ellipses are displaced with respect to each other. I may assume that

one of the ellipses, E, is fixed and the other, E', is moving.

To say that the curve C=O does not change when _i and _2 remain constant is

to say that we may find a law of the motion of E' such that if at any moment a

point M' of E' is at a zero distance from a point M of E (needless to recall that

these two points, being imaginary, can be at zero distance without coinciding),

the distance of these two points will remain constantly zero.

!

Let M 0 be the position of the point M' at any instant On E there are four

points M I, M 2, _, M4 which are at a zero distance from M_; these four points can-

not be a straight line. The point M' would therefore have to remain on four
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spheres of the radius zero having their centers at MI, M2, _, M4; but, as these

centers are not in a straight line, these four spheres can have only two common

points at a finite distance. It is therefore impossible that the point M' move
while remaining on these four spheres.

The non-existence of the uniform integrals is thus rigorously demonstrated.
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CHAPTER7. ASYM_OT!CSOLUTIONS

i04. Let /335

__i = Xt (i= i,a.....n)
dt

be n simultaneous differential equations. The X are functions of x and t.

(z)

With respect to x, they may be developed as a power series.

With respect to t, they are periodic and of period 2w.

Let

be a particular periodic solution of these equations.

functions of t of period 2n. Let us set

0
The x. will be periodic

I

It will follow that

_' - (2)_i = _"

The _ are functions of _ and t_ periodic with respect to t and developed in powers

of _; however, there will be no more terms independent of _.

If _ are very small and we neglect their squares, the equations reduce to

_d dXi dXt d'Xt
d---/= _ _'+ _ _'_ a_---_,_"'

which are the equations of variation of equations (I).

They are linear and have periodic coefficients.

general solution; we find

(3)

We know the form of their /336

_t _--Atea't_tt --t-Ase_,t?2t "+-,.-.+ Ane"'t? nl,

_2 = Ale_t?tt ÷ Asea't? it -+-"""+ Ane_'t?nt'
.,...°.oo,.., ........ o..,.o ..... *......*..'1

[_ = A4 ea, t?t_ + A_e_'t_In +. . "+ Ane_t't?nn'

A being constants of integration_ _ fixed constants which are called characteristic

exponents, and _ being periodic functions of t.
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If we then set

|t---_J?tt+ _t_tt+...+ _,,?_n,
"° ........................... °,v

equations (2) will become

d_t

d---_ = Hl,

where H. are functions of t and of I] of the same form as E.l

In addition we may write

dr, r -, ,__ H_+ ._
---_- = l:i_ -- H, .... + .. "

Hp represents the total of the terms of H.
i l

(2')

(2")

which are of degree p with respect to

As for equations (3), they become

d.,__,= H,' = =,-... ( 3' )
dt

Let us now seek the form of the general solutions of equations (2) and (2').

I say that we must find:

_i = function developed in powers of Ale_it , A2e_2t, ••., Ane _nt whose co-

efficient s

We may then write

are periodic functions of t.

"_l= "_l +._jt +...+._+..., (4')

P

_i representing the total of the terms of _i which are of degree p with respect

to A.

We will replace _i by their values in H_ and we will find
1

H.P, q
I

H_: lt['r+ H_ 'p+t +...+ H_,q+ ....

designating the total of the terms which are of degree q with respect to A.

We will then find

/337
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d_ = _i_d, '1_= A,e",_,
dt

a_,' _,,_,' - n,',', d____,'_ _,_, = n,,_ + n_,_,
dt dt

........ ,ooo1 ..... ,,. .......... ..°. ........ ...._

d'_7 "_rl_ -----H_'q+ H_'q-+-.-.+'H_ ¢'q = Kq.
dt

I

These equations will permit successively calculating by recurrence

•,,', ,,_ ..... _7 .....

In fact, K depends only on _i, i]2, ..., I]q-l. If we assume that these quantities
q

have been previously calculated, we may write K in the following form:
q

Kq = _ ,. tl_' ,.2_ _' • • ' A _" et'_,L * _,_ ..... +"-_-_ _,

is q and _ a periodic functionbeing positive integers whose sum

We may again write

= _.Ceyt ¢-'Si,

C being a generally imaginary coefficient and _ a positive or negative integer.

For brevity, we will write

A_'A_:... A_" = Aq,

and it will follow that

dt
-- atrt_ ----Z CAc'ettTC=Y_etP _"

Now we can satisfy this equation by setting

An exception would be the case where we would have

_,_ + z,,13- at,= o,

in which case it would introduce itself into the formulas for the terms

will reserve this case, which does not in general present itself.

in t. We
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Convergence of Series

105. We must now treat the question of the convergence of these series.

In addition, the sole difficulty results, as we will see, from the divisors

Let us replace equations (2') by the following:

(5)

,,,,: :A,:,,+ F,' + H--,'.+...+ F?+ .... (2")

Let us define HP. We see wit}out difficult that Hp !as the following form:
I i

Hf = -_.,,__'-_'.,,...._ _"_'r,,'=_.

C is an arbitrary constant_ B are positive integers whose sum is p, and y is a

positive or negative integer. We will then take

"_1 '12 ....

The series thus obtained will be convergent provided the trigonometric series

which define the periodic functions which the H depend on are absolutely and uni-

formly convergent; now this will always occur because these periodic functions

are analytic. As for e, it is a positive constant.

We can ext,ract I] from equations (2") in the following form:

| | ..
(4-)

In addition several terms may correspond to the same exponents _, and 6 is a

positive integer. If we compare this with the series taken from (2'), which are

written

A_l,s_, , A _-
_t= XN H

/339

here is what is observed: i) M is real, positive and greater than INf.2) It

designates the product of the divisors (5) whose number is at most equal to 6.

If series (4") therefore converges and if none of the divisors (5) is smaller

than ¢, series (4') likewise converges. This, therefore, is how we can express the

condition of convergence.

The series converges if the expression

cannot become smaller than amy given quantity ¢ for integral and positive values

of B and integral (positive or negative) values of y; that is to say, if neitLer

of the two convex polygons which contain, first the _ and +_-i and the second the

and -_-i, at the same time contains the origin; or if all quantities _ iave

their real parts of the same sign and if none has its real part zero.
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What will we then do if this is not so?

Let us assume, for example, that k of quantities _ have their real parts

positive and that n-k have real parts which are negative or zero. It will then
occur that series (4") will remain convergent if we annul the constants A which

correspond to an _ whose real part is negative or zero, so that these series

will no longer gi_re us the general solution of the proposed equations, but a so-

lution containing only k arbitrary constants. This solution is represented by a

series (4') developed in powers of

Aze=, t, Ate_, t, ..., Ake=z t,

because, by hypothesis, the real parts of

are positive and the exponentials

tend toward O when t tends toward -_. Therefore the same is true for the quan-

tities •, which means that when t tends toward -% the solution represented by

series (_') as_ptotically approaches the periodic solution considered. We will

for this reason call it an asymptotic solution.

We will obtain a second system of asymptotic solutions by annulling in series

(4') all coefficients A which correspond to exponents _ whose real part is positive

or zero. This series is then developed in powers of

A_e_',t, A[e_'t, ..., A_e_, t,

the e o ents "'" havin their real part negative. If wethen

t tend toward +% the corresponding solution will asymptotically approach the con-

sidered periodic solution.

If we assume that the given equations go back to the equations of Dynamics,

we have seen that n is even and that the _ are equal to each other and of opposite

sign.

Then, if k among them have their real part positive, k will have their real

part negative and n-2k will have their real part zero. In first taking the _,
which have their real part positive, we will obtain a particular solution containing

k arbitrary constants; from this we will obtain a second, taking the _ which have

their real part negative.

In the case where none of the _ has its real part zero and in particular if

all _ are real, we have in addition

/I •
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106. Let us assumethat in equations (i) the X depend on a parameter
and the functions X are developable in powers of this parameter.

Let us imagine that, for _=0, the characteristic exponents _ are all dis-

tinct so that these exponents, being defined by an equation G(_ _=0 (analogous
to that of article 74, but such that the equation G(_O)=O has all its roots dis-

tinct) are themselves developable in powers of _ by virtue of articles 30 and 31.

Let us assume finally that one has, as we have just said, annulled all con-

stants A which correspond to an _ whose real part is negative or zero.

Series (4')which define the quantities_ithen depend on _. I propose to

establish that these series can be developed not only in powers of the Aie_i t
but also in powers of _.

Let us consider the inverse of one of the divisors (5)

I say that this expression can be developed in powers of _.

Let _i' _2' "'" _k be the k characteristic exponents whose real part is

positive for _=0 and for small values of _ and which we have agreed to retain.

Each is developable in powers of _. Let _. be the value of _. for _=O; we may
1 I

O
take _0 sufficiently small so that _i differs as little as we wish from _i when

t w

I_I<_0. Then let h be a positive quantity smaller than the smallest of the real

O O 0

parts of the k quantities _i' _2' "'" _k; we can take _0 sufficiently small so

I_I<_ O, the k exponents _i' _2' "'" _k have their real part greater than
that when

h.

The real part of y¢--_ ._-Z=_--_i will then be greater than h (if _i>O), so

that we will have

(6)

•hus, if 1 1%, thefunction

('t ¢-_ + _ - _'D-'

remains uniform, finite, continuous and smaller in absolute value than _.

From this we will conclude, according to a well-known theorem, that this func-

tion is developable in powers of ._ and that the coefficients of the development

are smaller in absolute value than those of the development of

296



!

It is to be remarked that the numbers h and _O are independent of the integers

and _.

There would be an exception in the case where _i is zero. The real part

of the divisor (5) could then be smaller than h and could even be negative. It

is in fact equal to the real part of E _ _, which is positive, less the real part

of _. which is likewise positive and which can be greater than that of E _ _ if
1

_i is zero.

Let us assume that the real part of _. remains smaller than a certain number
1

h2 so long as I_I<_0. Then, if

Z_>-_ +x (7)

the real part of (5) is certainly greater than h; therefore there can only be

difficulty for those of divisors (5) for which inequality (7) does not occur.

Let us now assume that the imaginary part of quantities _i' _2' "'" _k re-

mains constantly smaller in absolute value than a certain positive number h2; if

we then have

I+1> h_z$ ÷ h, (8)

the imaginary part of (5) and consequently its modulus will still be greater than

h; so that there can be difficulty only for those of the divisors (5) for which

none of the inequalities (7) and _8) takes place. But these divisors, which satisfy

none of these inequalities, are finite in number.

According to a hypothesis which we made above, none of them vanishes for the

values of b which we consider; we can therefore take h and _0 sufficiently small /343

for the absolute value of any one of them to remain greater than h when I_[ remains

smaller than _0"

Then the inverse of an arbitrary divisor (5) is developable in powers of

and the coefficients of development are smaller in absolute value than those of

We have written further above

!
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According to our hypotheses, C can be developed in powers of _ so that I may set

C ZEst, Hf= ZE,,I_'_ _' _"eY :¢='= F 5| _$ " "" "

Let us now return to equations (2"), here getting

1" hl %2 ....

The second members of equations (2") will then be convergent series ordered in

powers of _, _I, _2' "''' _n"

From this we will obtain the _i in the form of series (4"), convergent and

ordered in powers of _, Ale_it , A2e_2t , ..., Akeakt

From equations (2') we would on the other hand obtain the _i in the form of

the series (4'), ordered in powers of _, Ale_it , A2e_2t, .. ., Akea_t, etv6-_, e-t_Zi-

Each of the terms of (4') is smaller in absolute value than the corresponding term

of (4"), and as series (4") converge, the same will be true for series (4').

Asymptotic Solutions of the Equations of Dynamics

107. Let us return to equations (i) of article 13 /344

d,_l dF dyi dF (i ----x 2, n),
d--/= = -- ..... (1)

and the hypotheses made concerning them in this article.

We have seen in article 42 that these equations admit periodic solutions and

we can conclude from this that, provided one of the corresponding characteristic

exponents _ is real, these equations will also admit asymptotic solutions.

At the end of the preceding article we considered the case where in equations

(i) of article 104 the second members Xi are developable in powers of _ but where

the characteristic exp6nents remain distinct from one another for _=0.

In the case of the equations which are now going to concern us, that is to sa_
equations (i) of article 13, the second members are still developable in terms of

the powers of _; however, all the characteristic exponents are zero for _=0.

From this there results a large number of important differences.
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In the first place, the characteristic exponents _ are mot developable in

powers of _, but in those of f_ (cf. article 7h). Similarly_ the functions which

I have called _i_k at the beginning of article 104 (and which in the particular

case of the equations of Dynamics which here concern us are nothing other than

the functions S. and T. of article 79) are developable not in powers of _, but in
i I

powers of f_.

Then in equations (2') of article 104

dr, l _ }I_ ;
dt

the second member H. is developed in powers of _, etW_7,e-tT_7 and _ (and not of
I

_).

From this we will obtain the _i in the form of the series obtained in

article 104

and N and H will be developed in powers of /_.

A certain number of questions then present themselves naturally:

I) We know that N and H are developa0!e in powers of /_; is the same true

for quotient _?

2) If this is so, there exist series ordered in powers of f_, A'e_it'l etg_

and e-t/-I which formally satisfy the proposed equations; are these series conver-

gent?

3) If they are not convergent, what part can we extract from them for cal-

culation of the asymptotic solutions?

Development of These Solutions in Powers of /_

N
i08. I propose to demonstrate that we can develop_in powers of _b and that

consequently there exist series ordered in powers of A'e_itl and which formally

satisfy equations (I). One might doubt this to be so; in fact, _ is the product

of divisors (5) of article 104. All these divisors are developable in powers

of _. However, some of them_ those for which y is zero, vanish with /b. It

may occur that H vanish with b and contain as a factor a certain power of /b.

N

If N did not t_en contain this same power as a factor_ the _ would still develop

in terms of the increasing powers of /b, but the development would begin with

negative powers.
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I say that it is not so and that the development of _ contains only posdtive

powers of _.

Let us see by what mechanism these negative powers of /_ disappear. Let us

set .L,_.' ,,, and let us consider x and y as functions of the variables t and w.

Before proceeding, it is important to make the following remark: among the 2n

characteristic exponents _ two are zero and the others are in pairs equal and of /346

opposite sign. At most, we will retain only n-i of these exponents, agreeing to

regard as zero the coefficients A. and the variables w. which correspond to the re-
1 1

jected n+l exponents. We will retain only those exponents whose real part is pos-
itive.

This granted, equations (i) become

d_t dx_- dF
at + = (2)

dyi dy, a'F
(3)

In leaving these equations, let us attempt to develop x. and Yi-n.t in increasing
1 1

powers of _ and of w so that the coefficients are periodic functions of t.

We may write
p

= CF+ + ....

for we have in article 74 how we may develop the characteristic exponents in powers

of

On the other hand, let us write

p
0 IxL= x_ + xi ¢"_ + .... _x? l_',

P

y_-- n_t = y? + yl ¢_ + .... _yf _i,

the _i and the _i being functions of t and of w, periodic with respect to t and

developable in powers of w.

If in equations (2) and (3) we substitute these values in place of 0_, x. and

Yi' the two members of these equations will be developed in powers of _.

In the two members of equations (2) let us equate the coefficients of _,

P

and in the two members of equations (3) let us equate the coefficients of _2; we

•,rill obtain the following equations:
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8xf+, , dx_ d' F, p-,

dyr Zl_x[w, dy_t __.T[__£, d'Fo x_., 1+ _

where Zp and T_. depend only on
i l

x °, x_ ..... x_-',

.rL .r,' .... , y,'-',

Let us agree, as we did above, to represent the mean value of U by [U] if U is

a periodic function of t.

From equations (4) we will then be able to deduce the following:

z_-.,_-1 =[zf] x.._kLay_d_ , (5)

z,_ d[y_'-'] d,V,,,,. _ = - _.._._dx_ dx_,d_k

Let us now assume what a previous calculation has given us:

' • _f-', _7 -[_71,

y_, y_, .. p-' yf-,• , .r, , -D'f-'l.

Equations (5) will permit us to calculate [_i ] and [yi p-I] and consequently

xp and p-i Equations (h) will then permit us to determine
l Yi '

p+I p_-I [._, 1,xi --[,r, ] and y}'-- P

such that this process will furnish us by recurrence all coefficients of the devel-

opments of x. and Yi"
l

The sole difficulty is the determination of [_i ] and _i p-I] by equations (5).

The functions [_i] and_iP-i ] are developed in increasing powers of w, and we

are going to calculate the various terms of these developments beginning with the

terms of the lowest degree.

To do so we are going to return to the notations of article 79, that is to say,

we are going to set

r d.v, ]d_Fo = C°k and _ = bik
dx_ _, Ld_'i dxkJ

(for zero values of w).

If now we call _i and _i the coefficients of

_T'_7'•••_z_,

in [_i ] and _i p-I] in order to determine these coefficients, we will have the

following equations:
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_. _ (6)

In these equations (6), ki and bi are given quantities because t,ey depend only
on

0 I

or on terms of [x_i] and [yi p-I] whose degree with respect to w is smaller than

_i-_ m2 -_-. , .-_ ma_ I.

In addition_ for brevity we have set

S : m,_ + m_,,; +...+ m,,_,,,__,.

For calculation of the coefficients _i and I]i we therefore have a system of

linear equations; there could be difficulty here only if the determinant of these

equations was zero but this determinant is equal to

s,[s-- (_b:] is- - (_):]... is; - (_;, ,_:1.

It could vanish only for

that is to say_ for

S = o, S --- :': _,,

Ill I -_ fZl._ --t- • • . -t ltl _, I : 0 or l.

One could therefore encounter difficulty only in the calculation of the

terms of degree 0 or I with respect to w.

However_ we need not go back to the calculation of these terms; in fact, we

have learned to calculate the terms independent of w in article 44 and the coef-
ficients of

f,l¢'| _ I.I.'Ii_, . . , _ l,_n_!

in article 79.

The terms independent of w are in fact none other than series (2) of

article 44, and the coefficients of

_'I _ ¢_'2. " ' " ' llJn- l

are none other than the series S. and T. of article 79-
I I
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It remains for me to say a word on first approximations.

o
We will give the xi constant values which are none other than those which

we have designated thus in article 44.

We will then have the following equations:

= o, d_ - o, d-7-+ d,_--S= --_ ux--7d_ "' (7)

dx_ + Zk_* dzr_ dF,a--+ u_---_= _"

0
• In

1

In F O, which depends only on the x., these quantities must be replaced by x.l

0 t FI then becomes a periodic
F I the x. are replaced by x. and the Yi by n iI I

function of t whose period is T. We will designate @ the mean value of this periodic0

function FI; @ is then a periodic function of period 2w with respect to Yi"
0 i

The first two equations (7) show that Yi and xi depend only on w. In equating

in the last two equations (7) the mean values of the two members, it follows that

= _c,_, (8)

a.,, = a.r-7"
0 1

These equations (8) should serve to determine the Yi and the x i as functions of w.

Can these equations be satisfied by substitution of series developed in po_ews of w

in place of the yO and the xl?i

In order to make this clear, let us consider the following differential equa-

tions :

dy_ v,"*" ' 1,-a- = =':'_'_' (9)

a:.! a,,+ i=dy-7"

0

These differential equations where the unknown functions are the Yi and the

i
x. will admit a periodic solution

i

being the quantity so designated in article 44.
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The characteristic exponents relative to this periodic solution are pre-
I

cisely the quantities _k" Amongthese quantities we have agreed to retain only

those whose real part is positive. Equations (9) admit a system of asymptotic
solutions and it is easy to see that these solutions are presented in the form of
series developed in powers of w. These series will then satisfy equations (8).
These equations can therefore be solved.

i 0
The x.1 and the Yi being thus determined, the remainder of the calculation no

longer presents any difficulty as we have seen. There therefore exist series
ordered in powers of _ w a_d e+t_-i which formally satisfy equations (i).

This proves that the development of N never begins with a negative power of
n

_. The analysis in articles ii0 and iii will furnish us a new demonstration of
this.

Divergence of the Series of Article 108

109. Unfortunately, the series thus obtained are not convergent.

Let, in fact,

If _ is not zero this expression is developable in powers of _, but the radius

of convergence of the series thus obtained tends toward 0 when _ tends toward
O.

i

If we therefore develop the various quantities -_ in powers of _b, we will

always be able to find an infinity of these quantities, for which the radius of

convergence of the development is as small as we wish.

We might still hope, improbable as this may seem, that the same is not true

for the developments of the various quantities_j however, the demonstration which

I have given in volume XIII of Acta mathematica (p. 222) and to which I will later

return shows that this is not so in general; it is therefore necessary to give up

this faint hope and conclude that the series which we have just formed are divergent.

But although they are divergent, can part of them not be extracted?

Let us first consider the following series, which is simpler than those which
we have seen:
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X _nF(_.,, $)-----
u 1+ /l_t

This series converges uniformly when _ remains positive and w remains smaller in

absolute value than a positive number w 0 smaller than i but otherwise arbitrary.

Likewise the series

I dPF(w, u_ X nP-t_v_
[p_ d_o = "*- (t--,- nVt)P

converges uniformly.

If now we attempt to develop F(w, _) in powers of _, the series to which we

are led

x_(-- n)p_p (i0)

does not converge. If in this series we neglect all terms where the exponent of

exceeds p, we obtain a certain function

,I,p ( ,,.', _).

It is easy to see that the expression

Ff_. _-- _p(w. _)
W'

tends toward 0 when _ tends toward 0 through positive values, so that the series

(i0) asymptotically represents the function F(w, _) for small values of _ in the

same way that the Stirling series asymptotically represents the Eulerian function

for large values of x.

In the following articles I propQse to establish that the divergent series

which we learned to form in article 108 are completely analogous to series (i0).

Let us in fact consider one of the series

..., ,); (lO')

the reasoning of article 105 has shown that these series are uniformly convergent

provided w remains below certain limits in absolute value and f_ remain real.

N
If we develop _ in powers of f_, the series (i0') are divergent, as we have

said. Let us assume that in the development we neglect the terms where the ex-

ponent of f_ exceeds p. We will obtain a certain function

..., t)
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which will be developable in powers of w and e_t_-I

nomial of degree p in _.

and which will be a poly-

We will see later that the expression

F -- 4_p

tends toward 0 when _ tends toward 0 through positive values, and this is true

however large p may be.

In fact, if we designate by H the sum of the terms in the development of
P

N
-_ where the exponen_ of _ is at most equal to p, we have
F

and I will show that the series of the second member is uniformly convergent and

that all terms tend toward 0 when _ tends toward O.

We can therefore say that the series which we obtained in article 108 rep-

resent the asymptotic solutions for small values of _ in the same way that the

Stirling series represents the Eulerian functions.

/353

New Demonstration of the Proposition of Article 108

ii0. In order to demonstrate this fact_ I am going to submit the equations to

a transformation which will at the same time furnish me a new demonstration of the

theorem which was the subject of article 108. To fix the ideas, let us assume omly

two degrees of freedom; then we will retain only one of the quantities w and we may

write our equations in the following form:

d,'ri dxt dF dyl d,yl die ( i = I ,_ )
a--7+ _'_ "a-_ = "d-_ze' _ + "" _ = d,__

suppressing the indexes of _ and w which have become unnecessary.

2 .
We know that _ is developable in odd powers of _ and consequently _ mn

2
powers of _; inversely, _ is developable in powers of _ ; we can replace _ by this

development so that F will be developed in powers of 2. For _=0, F reduces to FO,

which depends only on x I and x2.

Let

_t = _(t), .ri = _._(t)

be the periodic solution which serves us as a point of departure. As in article

79, let us set
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our equations will become

d_,_._.2/ d_i dr, i drdi
at -t- a _v _-_ = _ i , d.---_-r- a ov -_ =H_. (ii)

2 and the coefficients
The values E. and H. are developed in powers of {i' _i and _ ,

I l

are periodic functions of t.

For _=0, dF and consequently Ei vanish; therefore Zi is divisible by 2

dY i

and I may set

_, ,-' Xt + "X_,

_. representing the sum of terms of the first degree with respect to the { and
I

T_ and _2X'. representing the sum of theterms of higher degree.
l

dF
Likewise, when _ is zero, _. and consequently H i depend only on {i and not

I may then set

Hi: Vi+ ¥_'+ a'Ql+ a,q_,

yi+_2Qi representing the sum of the terms of the first degree with respect to

and _, while y._+ 2Q, represent the sum of the terms of a degree higher than thei

first. I also assume that Yi and Y[ depend only on {i and _.i

Let us set

2
Y will become divisible by _ and Y_ by _ , such that I will be able to set
i

yi+,,,Qi=_Zi ' y'_ + _' Q[ = _t, Z].

and our equations will become

d---/÷ z_ _ = ',Xi+ axe,

dr, i d_i td-/- + aw _ = ,,Zi+ -,'Z_.

(12)

Let us consider the equations
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d"-t-= 2Xi,
)

d____ldt=_Z,.. t

(13)

These equations are linear with respect to the unknowns _i and _i" They do not

differ from equations (2) of article 79 except because _i and _2 are replaced by

_i and _2" According to what we have seen in articles 69 and 74, the equation

which defines the characteristic exponents admits four roots, one equal to +_,
the other to -_ and the other two to O.

To the first root, namely the root +_ there corresponds a solution of equa-

tions (2) of article 79, which we learned to form in this article and which we have

written thus:

_t -_ • _t Sl, _l = e _t T_.

I recall that S? is zero, and consequently, Si is divisible by _.
1

To the second root, -_, there corresponds in the same way another solution of

equation (2) and we write

_t = e-_tS_, • rd = e-atT;..

Finally, to the two zero roots, there correspond two solutions of equations

(2), which we will write (cf. article 80)

_t = S_, _t = T_.

TI, T'_', T"i, Sl, S'_, S"! are periodic functions of t, as are S. and T..1 l 1

According to what we have seen in articles 79 and 80, S_, S" and S".'=aS. *
± 1 I i

will like S. be divisible by _.
1

Let us then set

= -- ' ' " S_'0,,

_ --_ S, o, + S_ 0, + S_ o, ÷ S; o,,

_,= Ts 0t'+- T_ 0,+ T_ 0__- T_'0,.

r_ = TI¢_t -+- T_ 01 + T_ 0, -_--T_ 0_.

(13a)

The functions 0. thus defined will play a role analogous to that of function _i
i

of article 105. Equations (12) then become

3o8



dot a'_t
d--t + ,,w _ -- "_I = ,et,

dO_ de_

01' @2' ®z _ @4 are functions developed in powers of 81 , 02 , 05, 04 and _, all
J

terms of which are of at least the second degree with respect to e, and whose

coefficients are periodic functions of t. In addition_ 0 must be periodic func-

tions of t and the terms of the first degree in w, el, 02, e3 and @h must reduce
to w_ O, 0 and O.

These equations (lh) are analogous to equations (2') of article 105.

We in fact find

-x; = o,S_ +o,S] + o,S_- ÷ e, s7,

z] = 8t Tl + et T] -+- OaT] -+- e, T7,

which gives us four equations from which we can obtain the four functions @_ since

the S_ T_ X' and Z' are known functions. I say that we will find

0_= Ul,, X'L-+ U_,tX_ + Ul,,Z_ + UI,, Z_,

the U being periodic functions of t developable in increasing and positive powers

of _. In fac% for this it suffices that the

' 'S_ 'S_ 'ST

_s, _ _

l I I I S"

T, Ti T] T'_

Tt T_ T] T]

not be divisible by _, that is to say, not vanish for _=0.

S. i in article 79
For _=0_ -!l reduces to the quanti_y which we have called S i

O
and T i to Ti, and these quantities satisfy equations(9) and (I0) of this article
79.

Here we develop not in powers of f_, but in those of _, so that the quantity

which we called _i in article 79 is equal to I. Equations (9) of article 79 are

therefore to be written

T# = C_, S____I+ .C°'S____A ,

S__= b,.tTt -+-bltTt,
n,
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and these should be satisfied for _=0.

Concerning the second solution, the exponent is equal to -_ and consequently /557

_i is equal to -i, so that these equations become

@ i

-- T; = Cy,S......._ + C_, St

$_ = b_'tT_ + b,tT;,

which permits assuming

T_.----Tt, S_ :-:--- Si.

2 S[ vanishes for _=0.
S':Ibeing divisible by _ ,

dF0
T;= -d= --_;-

For _=0, T'".= _T.
i I

vanishes and we have

s;' = st ,_o;
at

we find

At the same time, for o_0 we have

,,, = c?, s; -- c?, s}.

From this we can conclude that for _=0 the determinant A reduces to

S, S7

St S_
_t er

We find in addition

IS, S]'

IT' n'l I-_ T
[ T, nt ---- St S;

The determinant of these 0
Cik , which is nothing other than the Hessian of FO, does

not vanish in general, so that A can vanish only if we have

but if we observe that

T_ TI.
nt _2

nt btl _ ntbit = O,

we would deduce from this that
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which cannot hold true.

The determinant A is therefore not zero. Wecan also establish it in the
following manner. Let us consider the following equations:

d___j= b. _t + bi2_z,
dt

a_____,= c_, _, + r5°, _,.
dt

These are linear equations with constant coefficients. They admit four linearly

independent solutions, namely

_t et St= --, Tlt= etTl;

_l e-t S't= -, _t----"e-tT'_;
¢L

--, ru= T[;
CI

& ,,sT s]--+t--, 71t=TT+tT _.

S.

It goes without saying that in T. and -_m it is necessary to make _=0_ so that these

quantities reduce to constants.

These four solutions being linearly independent, their determinant for t=O must

not vanish; now this determinant is precisely A. Therefore A is not zero.

Q.E.D.

We thus see that the functions ei enjoy many of the required properties.

iii. The preceding analysis immediately extends to the case where there are

more than 2 degrees of freedom.

If we set

the equations may then be written, as in the preceding article,

dm dm = ¢'_Zt + laZ}
d---/"-4- r.a, wk

(i-----_,2, ...,n).
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The functions Xi, X_, Z. and Z_ enjoy the sameproperties as in the preceding
i I

article, i.e., they are developable in powers of the _i' Ci and f_, and are

periodic with respect to t. In addition, X i and Z i are linear with respect to

!

_i and _i and X i and Z! contain only terms of at least the second degree with re-l

spect to these variables.

Let us consider the equations

d_ = _/-_X,, d_ _a7 _i - v'_z_;

they will admit 2n-2 linearly independent solutions corresponding to the 2n-2

characteristic exponents which are not zero; these solutions may be written

they will admit also two degenerate solutions defined in article 80 and which I
will write

_t-_d = Sl,tn--I, ?jl = Tl,tA-t

and

The functions S.
l,k

is divisible by f_.

We can then set

¢_ = s,,,. + ¢_ts,,,._,, _, = T,,,. + #tT,,,,,_,.

and Ti, k(k=l, 2, ..., 2n) are periodic in t.

_=la _=la

_i -_- X Tlk Ok_

4=1 k=l

In addition, Sik

and then we will obtain the equations

dt}l +X=kwk a_i
d--/ _, ,nOt = ¢'_0i (i = t, _..... _n -- a).

d---7--+ z.,.., a,,,--T- ¢'F7o,.=/do,.-,,

_t, dQt_

(14a)

_36o
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"The functions _ are defined by the 2n equations of the first degree

_=_

The determinant of these 2n equations, that is to say the determinant A

formed with Sik/J_ and Tik, does not vanish for _=O. We could demonstrate this

as in the preceding article; the second demonstration in particular can be applied,

without change, in the case which concerns us.

From this we will conclude that the functions _ are periodic with respect to

t and developable in increasing and positive powers of ®i and /_.

This granted, it is easy to demonstrate the proposition of article 108.

Let us assume, in effect, that p of the characteristic exponents _i' _2' "' "'

have their real part positive, and let us attempt to satisfy equations (14a) by
P

replacing the e. by series developed in powers of w I, w2, ..., w . Therefore let
l P

o,= z[;, p,,_,..... _,,,-rl_'r"--',,',_',,'_,'...,,'_' ;

91, 92, ..., _p are positive integers, _ a positive or negative integer, and the

coefficients [i, 91, 92, ..., _p, 7], which for brevity I will also write [i, _, y],

are constants which must be determined.

If we substitute these values of 6i into ®'l' it will follow that

e, = z(i, _,, _,..... _,, .f)e_w_,,w_,,... ,,_,,;

the coefficients (i, 91, 92, ..., _p, _) or (i, 9k, 7) will be constants which

will depend, following a certain law, on the indeterminate coefficients [i, _, y].

I say that the [i, _, y] and consequently the (i, 8k, y) are developable in increas-

ing powers of /_ and the development contains no negative power.

In effect, equations (14a) give us

[¢,$,, "t]= (¢, $_,"t)_'_ + x_,_L.- _,
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for i=l, 2, ..., 2n_-2 and

•"z_'---_"+ _:"_P_

These formulas permit calculating coefficients [i, _k' _] by recurrence. If we

in effect agree to say that the coefficient [i, _k' Y]' just as (i, _k' Y)' is of
the degree

p,._ _,+...+p,,,

it is easy to see that the quantity (i, Bk, y) depends only on the coefficients

[i, _, y] of lesser degree, which can be assumed known by a previous calculation.

Likewise, we can by recurrence demonstrate the stated proposition. In fact,

= I say that it is true of [i, _k' y] if it is true of the coefficients of lesser

degree, for if this is so, it will be true of (i, _k' y), which depends only on

i these coefficients of lesser degree. It therefore remains to demonstrate that

the fraction

is developable in positive powers of f_. Now this is obvious, for if ¥ is not zero_

the denominator is not divisible by f_. If y is zero, the denominator is divisible
by f_, but not by _; but the same is true for the numerator.

Tme proposition of article 108 is therefore thus demonstrated anew.

Transformation of Equations

112. Let us return to the case where there are only 2 degrees of freedom /362
and let us return to equations (14) of article ii0.

Let @ be a function which, just as ®i' @2' ®}' ®4' is developed in powers

of 81 , 82 , 83, 84, _, et_-I and e-t_-l, and is such that each of its coefficients

is real, positive and greater in absolute value than the coefficient of the cor-

responding term in @i' @2' ®3 and ®4; all terms of @ will be, in addition, just as

those of the ®i' of at least the second degree with respect to 8.

Let us observe that the number

(where n is a positive, negative or zero integer_ and where p is a positive integer
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at least equal to i) is always greater in absblute value than I, whatever in
addition is assumedof n, p, and _. Now, the numberswhich will play the role
of divisors (5) of article 105 divided by _ are precisely of this form.

Let us then form the equations

e,= e,÷*, 6,=_, (15)

which are similar to equations (2") of article 105.

From equations (14) we can obtain the 6 in the form of series ordered in

Ztj-ipowers of w and and which are analogous to series (4') from article 104.

From equations (15) we can obtain 8 in the form of a series ordered in powers of

the same variables and analogous to series (4") of article 105. Each of the

terms of these last series is positive and greater in absolute value than the cor-

responding term of the first series *; if therefore they converge, the same is

true for the series obtained from equations (14).

Now it is easy to see that we can find a number w 0 independent of _ such

that if lwI_ O, the series obtained from (15) converge.

From this it results that the series ordered in powers of w obtained from (14)

converge uniformly however small b may be, as I stated earlier. This reasoning is in

every point similar to that of article 105; the function _@ plays the role of H 2+i

_÷... and _ that of _, because all divisors (5) are of the form n_-l+_p, and con-
i

sequently greater in absolute value than _.

We now possess the 8 in the form of series ordered in powers of w and e_t/-l;

the coefficients are known functions of _. If we develop each of these coef-

ficients in powers of _, we will obtain the 8 in powers of _. The series thus

obtained are divergent, as we have seen earlier; nevertheless let

0_=0_+ _: _0_ .._0_+.. (16)

be these series.

Let us set

II, _ Or-+-0_, II2---- 0_--0_, lla = 0:_-+-0.4, II_ = 0_.

Let us set

O, =0_ _-_O_+_O_+...+_pO_+_pu, (17)

to the first p+l terms of series (16) plus a complementary term _Pu .
equating 8 i i

*Later see the demonstration given im detail in a similar case alluding to equa-

tions (21) and (21a).
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If in H. we replace the 0. by their developments (17), H. can be developed
1 I I

in powers of _ and we can write

H_= el' + ,,o2 + ",' o7 +... + ap-, o_'-' + ,,p Ui,

the _i being independent of _ while U. is developable in powers of _.
i

We will then have the equations

•_' '_ '_ = eL id--"/"=o, -_ + w -_-_
!

a_; a_,, = eL .. -- = o,_-'
d'-7 + W -d-w_ " dt + w _

(18)

/364

and then

dut dul d_'[
d--T+ "w _ + =w _ = =U_.. (19)

e.kthe quantities may be regarded as knownHere is the form of the function U. ;
I I

functions of t and w, defined by equations (18) and by equation (20) which I will

write later, while the u. remain the unknown functions. U. is then a function de-
l I

+t/-1
veloped in powers of w, e , ffand u.. In addition, any term of the q-th degree

l
with respect to the u i is at least of degree p(q-1) with respect to ft. In fact,

H i and consequently _Pu i are developable in powers of the ei and consequently of

_ksk and _Pu.. Any term of the q-th degree with respect to the u. will therefore
l I 1

be divisible by JPq in a'Pu. and by c_p(q-t)in U..
1 1

Let U.° be what U. becomes when c_ and the u. vanish; we will have
3- 1 3.

d[o,']
,,, --g-_. =[U:l. (2o)

Then, setting

then

_f
U_ = Ui- w d--"w

Vt= U'l --u,, V, = U_ + ut,

I may set equations (19) in the form

V, = O_ -- u,, V_ = U_,,
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du__.2 dut du2 du2 idt +_tW-d_u -_ut=_Vl' -d-[ +et_U-d-_ +au2=_tV_'

du__2 d", du, du, t (21)
dt + aw -d--_ -- :tt', = aVe, -d-¥ + :tw _-_ = aVe.

We then see that V i contain only terms of at least the second degree with re- J365

spect to w and u i.

In fact, _. are divisible by w and reduce to w or to 0 when we suppress in

them the terms of degree greater than the first in w. From this it results first

2
that _. is divisible by w • On the other hand, the second member of equation (17)

will clontain only terms which are at least of the first degree with respect to w

and u.. Therefore ®i contains only terms of at least the second degree with respect
l

to w and u.. From this it results that the only terms of first degree which can sub-
I

sist in U I, U 2, U3 and U 4 reduce respectively to Ul,-U 2, u5 and O.
2

In addition, w d_ is divisible by w ; therefore V i contain only terms of at

dw

least the second degree• Q.E.D.

From equations (21) we can take u. in the form of a series developed in powers1

of w and eIt_-I In applying to these equations the same reasoning as to equations

(14), I will demonstrate that these series converge when lwl<w 0 and that the con-

vergence remains uniform however small _ may be. du. d2.u
1 l

The case will be the same for the series which represent -- _ _
dw dw

From this it will result that we can assign an upper limit independent of

du. d2 u i1
to u i, _, --, ..., provided lwl<w O.

dw dw2

I will show later, in articles 116 and 117, that this still holds Zrue for

all positive values of w.

In fact, let @ be a function developed in powers of _, u i, w and e _-I such

that we have (for i=l, 2, 3, 4)

V_ < @(arg. ul, u,, u,, u,, a, w, e_t-_:'T).

Let @' be what @ becomes when u i, u 2, u 3, u 4, are replaced by u_, u_, u_, u¼.

Let us envision the following equations :

; , ( ). ' --u_ -,- @, 21af _j _t a
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analogous to equations (15). It is clear that these equations will admit a so-

! T

lution such that u_, u2, u3, u_ be developable in powers of w, _ and e+t_-I and
vanish with w.

! ! !

These series Ul, u2, Uy u_ will be convergent provided lwl does not exceed _366

a certain limit which I call w O. Let us now compare equations (21), and the func-

tions Ul, u2, _, u4 which satisfy them with equations (21a) and the functions

!

ui, U2, U_, U_ which satisfy them.

I propose to establish that

(I point out that _ does not figure among the arguments with respect to which
this inequality holds.)

n 'n

In fact, let u. and u . be the sum of the terms of u. and of u' which are of
1 i I i

degree n3 at most, in w; let us assume it established that

_7 < u__.

I will show that

u7_' < u__+,.

I will then have established by recurrence the inequality to be demonstrated.

If in place of the u. and u_ we substitute in V. and in @' the developments
I I I

of these quantities in powers of w and e _%_-I, these functions V. and @' will
I

themselves become developable in powers of w and e_t_-l.

Let us also designate by V_ and _,n the sum of the terms of at most degree
n in w. i

If then u_<u 'n
i i' we will also have

Then let

be a term of @,n+l and

AI w_÷ I _pt
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the corresponding term of Vn+li; we will have

[A:[< A.

Then let

Bi w n+ ! • pt _-_ a n_ B'i wn+ ! ePt¢"_

be the corresponding terms of u. and u_.
i i

Equations (21) and (21a) then give us

At A_

B,= p C_-T + n p Cr-_7 + n + _
rl e¢

Bt "4- As
B$ _ y

p r

B_ = B_ = B_ = A, Ba = B,+A.

At.

-I-n--I-!

/367

As

÷°l>'

we have

IS, l< B_,

whence

u7÷' < u'f+,,

and by recurrence

ut< u_.

Q.E.D.

As this inequality is taken with respect to the arguments w and et_-l, it

can be differentiated as much with respect to w as with respect to t, so that

we have

dul du_ dul du " _ ul d_ u_.
--3-i<-_, 3-_<2j, -j-_,< _ .....
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I

Let u'? be the value of u] for t:O; if ui_ui, for positive values of w
1 1

we will have

I"++I<'.'?-

However, u '0 is developable in powers of _: we can therefore assign it an

upper limit independent of _ for small values of _ since it tends toward a finite

limit when _ tends toward O.

The case is the same by virtue of the inequalities of luil which we have

just established.

We would likewise demonstrate that the same is also true for the derivatives

a-,I a.,l, d'.,.
1_' Id_ d_2

Q.E.D.

Reduction to the Canonical Form

113. Let us observe that equations (14) and likewise equations (21) can be

put in the canonical form.

In fact, if we set, as at the beginning of article iiO,

71 = ++(t) + 'u,

the canonical equations of motion

dxt dF
-di = "_+'

]568

will become
d_t dF* d'_+" dF"
a-7=-a-_, ' -a-/ =--a-if,'

F* being defined in the following manner.

When in F we replace x. and Yi by _i+{i and 9i+_i , this function F can bel

developed in powers of the { and _, the coefficients being periodic functions of
t. Then let F' be the sum of the terms of degree 0 and i with respect to the

and _; we will set

F" = F--F'.

If we designate by 6{i and 6_i arbitrary virtual increases of {i and _i
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and by 6F* the corresponding increase of F*, these equations can be written

What does this equation becomewhen _i are taken as newvariables?

Adopting a notation analogous to that of article 70, we will set
(U, U') ----_.(StT_-- S_T_)

and we willso define(U,U'), (U',U"), ... Article 70 teaches us that all these

quantities are zero with the exception of (U, U') and (U", U"'), which are con-
stants. These constants must be divisible by _, but they can otherwise be arbi- /369

T ! •
trary, since S i, T i, S i, T i, .. are determined only to within a constant factor.

We will therefore be able to set

(U, U') = (U', U')= _.

If we observe that, on the other hand,

d_l = OldSt + Otd$_ + {)_dS_ + O_dS_' + St d_t + S_ d_t + $', dBa+ $7 dO_.

_t = St_0t + S__0t + S_ _03 + S;' ,_8_, ....

We conclude that

,,(dO,_Ot_ dOt_Ot+ dO,_O_--d_ _, )= (_F"+ _ )dt,

6_ designating a homogeneous and linear expression with respect to the Oi as well

the coefficients of this bilinear function are in addi-
as with respect to the 60i;

tion periodic functions of t.

I say that 6_ is an exact differential and, in fact, equations (14) give us

-(dOt _t -- d02 _, + d0, _0b -- dl)__e_) = "( _G + _O') dt

where 8G is the exact differential of a function

G = et0,+ Ql

and where

I say that 6F¢_6_2(_G +_G') is an exact differential; to be convinced of this it

is sufficient to observe that, in this expression, the terms of first degree with

respect to 0. reducing to _G are an exact differential and that the same must be

true for those whose degree is more than i, since 6F* is an exact differential

and 6_ contains only terms of the first degree.
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Wecan therefore set

whence

F l
@_G+--,

Q_

F" designating the total of the terms of F which are of a degree greater than

the second with respect to {i and _i"

We can therefore write

/57o

d_l d@ d_, d@

If we recall that 8 depend on t, not only directly but also through the intermediary
of w, we will write these equations in the form

dl{, d_{, d@ dO, dos d@

(14a)

to which it is necessary to adjoin two analogous equations which we may deduce from

the first by changing 81 and 82 into 83 and 84 .

These are the equations (14) put into the canonical form.

It is a matter of doing so also for equations (21).

If in @ we replace 8. by their values (17), this function becomes developable
I

in increasing powers of _ and ui; if then we designate by 2p@, the sum of the terms

of at least degree 2p with respect to _, our equations become

with two other analogous equations.

These are equations (21) reduced to the canonical form.

114.

Form of Functions V.
1

Let us consider the function

F(a,,,.z',,y,,3",)

and let us here replace x. with
l
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x_.-+-"z2 + ,'.' x_ +, .,+ ",,+'.r_'_*' + _+' v,, (22)

and Yi with

The le_t ers

(22a)

,,,, ,.rL .rl, ..., .,,,'f t (23)

have the aame significance as in article 108. The only difference is that here

we have only two degrees of freedom and the parameter with respect to which we

develop and which plays the role of _ is equal to _2; the quantities (23) are

thus known functions of v and w. As for _P+Iv i and _v'i, these are arbitrary

complementary terms. I propose to inquire as to the condition for F to be de-

velopable in powers of _ v. and v_.
I I

For brevity let us set

• p

The necessary and sufficient condition for

F(z? _ z_, n_t + y? -+-y'i)

to be developable in increasing powers of x'i and Yi' and, consequently, those of _,

v. and v! will obviously be that the point
i I

_r,.= x_,- yt = nl t +y?

not be a singular point for F.

0 0
hi, xi,are constants; Yi are functions of w defined by equations (8) of article

108. However, in the majority of applications it will occur that if we give x_ and

n. the constant values which correspond to a periodic solution, F will remain holo-
1

morphzc whatever real values may be attributed to the yOi.

For exampl% let us take the problem of article 9 and let us assume that

Xl=L , x2=G define the form of the ellipse described by the infinitesimal mass,

while yl = t, y2=g-t define the position of the perihelion of this ellipse and that of

the mass on its orbit.
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In order for F to cease being holomorphic; it would be necessary that tLis
infinitesimal massencounter one of the two other masses; now_if the ellipse
does not intersect the circumference described by the second mass_as will be
the case in almost all applications_ this encounter can never occur, whatever
real values are attributed to t and g-t.

/372

This will be true if we take a greater number of degrees of freedom and

study the Problem of Three Bodies in all its generality.

Then the variables x i define the form of the ellipses and the mutual incli-

nation of their planes_ the variables Yi define the position of the nodes_ of the

perihelions and of the masses themselves. It will then occur in most cases that

if we give the variables xi the values x_ which correspond to a periodic solution
1

and to the limit _=0, these two ellipses may intersect each other only if they are

rotated in their plane. The function F will therefore cease being holomorpbic_

whatever the real values attributed to the Yi may be.

We are thus led to assume that for xi=x_ F is holomorphic for all real

values of Yi" The cases where this would not occur have no importance from the

point of view of application. This is additionally the hypothesis which we have
always made until now.

If in F the x.1 and Yi are replaced by expressions (22), F can be developed

in powers of _, v.1 and vii, and this development, whose coefficients are functions

of t and w, remains convergent for all values of t and w. The radii of convergence

are continuous functions of t and w which do not vanish for any real value Of t_ese
variables as much with respect to _ as v. and v[.

I I

If we observe that xi_ @i' ui_ _i' vi_ ... are connected among themselves by
the relationships

z_= ?,(t)+=O, yt= #_(t)+n_

and by relationships (13a), (17) and (22), we will conclude that F and consequently

9' are developable in powers of _ and u., that the coefficients of development and
1 •

the radii of convergence are continuous functions of t and w, and that these radii

of convergence vanish for no real values of t and w.

From this fact, and from what we already know on the subject of the functions

V_I (which are nothing other than derivatives of _'), we may conclude the following: /}73

We can find two real and positive numbers M and _ independent of t and w and

large enough for us to have (setting S=Ul+U2+U3+U h for brevity)

YL< Mw_÷M_s+

for all real values of t and for all values of w between 0 and an arbitrary upper
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limit W. This will hold true however large W may be, but the numbers M and

must be chosen much greater than W itself.

Fundamental Lemma

115. Let us now establish the following lemma:

Let _x,t,w), q'(x,t,w) be two functions of x, t and w which are developable

in powers of x and such that for all values of t and w we have what must be con-

sidered

?<?' (argx).

Let us consider the two following equations

dz dz
(1)

and

(la,)
_- + ,,,,, _ = _'(z', t, ,_).

Let us consider a particular solution of each of these two equations, chosen

such that for W=Wo(W 0 being an arbitrary positive value of w), we have

Izl < x'.

I say that for all values of w larger than Wo, we will still have

Izl<x'. (2)

Let us change variables, setting

!

t= - log _ --I-'_.
O_

Representing by round (5) the partial derivatives with respect to the variables

and w, we will then have

Ox dx I dx

Our equations will therefore become

0z
_p _-_ =_,

•if for a certain system of values of the variables
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inequality (2) is satisfied; likewise we will have

I_I<+',

such that inequality (2) will be satisfied also for

since we will have

,[ ax l _x'

and consequently

Therefore it will be sufficient for this to hold also when we have

GI: = _0_ T = "f!

for it to hold when have

_ f_aO_ T _ "_1"

However, we have assumed that they are so whatever t, and consequently _ may be

for W=Wo; they will therefore also be so whatever % and consequently t, may be

for w>w O-
q.E.D.

We would demonstrate absolutely in the same way a somewhat more general lemma:

Let _i' _' "'" %°n' _' _' "'" q°n be functions of Xl, x2, ..., Xn, t and w

developable in powers of x and such that for all considered values of t and

,s, .., _,,<_, (argz',,.z'=, . x,,).

Let us consider the equations

a[z¢ aLvl

d--T+=_ _r_ = _p_(x,, x, ..... z,,, t, ,_)

and

dr; dr;. ' :r;,, :, _) (i=, 2 .... , n).d'--7+ ='_ _ = +'_(z',, x,, . ....

/375

w we have

(3)

(3a)
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Let us assumethat we have, whatever t maybe for w=w0,

this will hold whatever t maybe for w_v0.

Let us nowmake somemore particular hypotheses on the subject of the func-
!

tions qci and q0i.

Let us assume that:

i) these functions are periodic with respect to t and of period 2w;

2) for small values of w, they are developable in increasing powers of w;

in addition, this may not hold true for all considered values of w: it is sufficient

that it be so for small values of this variable;

3) these functions are developable in integral powers of the parameter

and are divisible by _: in addition we must have

71_ ?_ (argzl, z, ..... z., _);

0 _,04) if we call _i and . what _i and q_ become when all x vanish, thesei

0 2

quantities _i and _ are divisible by w •

If all these hypotheses are realized, the theories of the preceding articles

show us that there exist particular solutions of equations (3) and (3a) of the

following form

:r_.= A_.,, ,_' ÷ A',, ,v' +...,
(4)

A. and A'. being functions of t and _ periodic with respect to t and developable
I, n I, n

in increasing powers of @.

Equations (5) [or (3a), which are of the same form] can in fact be reduced to

the form of equations (2) of article 104.

Let us in fact return to equations (2) of article 104; these are written

0J!--_;
Ol

the _i' being developable in powers of _i and of a very small parameter, are in

addition functions of t: they vanish with _i"

The _ depend on t not only directly_ but through the intermediary of the

exponentials A,e_', A,e_', .... A. e_-'.
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Here we assumethat all coefficients AI, A2, ..., A are zero with the exceptionn

of one; we will therefore have to concern ourselves with only one exponential

w=Ae_t. The _i will then depend on t first directly, then through the inter-
mediary of w. If we therefore represent the partial derivatives by d and the
total derivatives by _, it will follow that

2J'

and our equations will become

at,+ •_ _ = z,. (5)_7

The sole difference in form between equations (3) and equations (5) is then

that the second members of equations (3) depend on w and do not vanish for

However, it is easy to make this difference in form disappear. To do so it is

sufficient to join to equations (3) the following equation:

_m4-! _tt-+ !

which admits Xn+l=W as a solution, and to replace w by Xn+ I in the functions _i"

Then these functions _i no longer contain w and vanish for

2" I X| • • _','t ÷ I 0

We can therefore apply to equations (3) and (3a) the results of article 104 and

conclude that these equations admit solutions of form (4).

Calculation of coefficients A
i 2, Ai,3, ... is performed very easily by re-

currence through application of the processes of article 102.

Let us therefore assume that we thus find

IAl,,l_ A_,,

whatever t may be.

From this we will conclude that

(for w = o)
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and consequently that we can find a value w0 of w sufficiently small for us to

have

for all real values of t and for all values of w smaller than w0 and greater than

0.

We will then have, by virtue of the lamma demonstrated earlier,

for all real values of t and for all positive values of w.

Analogy of the Series of Article 108 With That of Stifling

116. Let us apply the preceding lemma to equations (21), which we will write

dut dui ,

d--7 + _ _ = ,U_. (21)

According to what we saw at the end of article 114, we can find two positive numbers

M and B such that for all real values of t and for all values of w between 0 and W

(this will remain true however large W may be), we have

M ,',P s z

$_ Ul ÷ Ullr "-"i--Ua_ ÷ Ut..

As for the index k of uk, it is equal to i for i=l or 2 and to 4 for i=2 or 3.
Let us then set

M .,p sz

uk'--?,Iwi+ ,Mws l+ _--_ps =4,(w, uj, ui, u,, u_)

and let us compare to equations (21) the equations

d,,_: d,,_- = =oC,,.,, ";, "_,, uL -_).
d---/+=_' (21a)

Among the particular solutions of equations (21) and (21a) we will choose

those which are divisible by w2 (these are really those which we earlier called

U.),
I

It is clear that we will still be able to take M sufficiently large so that

[lim u" [ < lim wu--_t..
l ¢;'tl

From this we will then conclude that /379
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Iull < u_

for

oKw<W.

Let us now attempt to integrate equations (21a). I first observe that, @ not
depending on t, u! will no longer depend on it and we will have

1

' ' u_= s"u'_-- us _-_uz = _,

d3' Jr' M 2P S 's

This last equation admits an integral

s'= _{_, =)

2
developable in powers of w and _ and divisible by w ; when _ tends toward O, s'
manifestly tends toward the integral of the equation

d$ r s t

_ --_ + M_'+_Is'_.

This linear equation is very easily integrated; we find

l w |

lim,'= M _'_es_'# e-u'_-, _d,_ (for c_=O).

From this formula I wish to extract only one thing_ that is if

o<_ w < _,t,"

s ' and consequently Ul, u2, u3 and u4 tend toward a finite limit when _ tends to-

ward O. 0_+=0_ +=,_+...

From this it results that the series

el -- O_-- ,,e_ -- ,,'e_ .... -- _p-! 8_'-'
_p--i

represents the function 0 i asymptotically (that is to say in the manner of the

Stirling series) or, in other words_ that the expression

=(el' + ui)

tends toward 0 with _. In fact_ this expression is equal to

and we have just seen that e_+u. remains finite when _ tends toward 0.
I I

du i
117. But this is not all; I say that_ remains finite when _ tends toward

O. dw
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We have, in effect,

"_t k'd-_ ] "l- " W _l-_ k d.v ] + " d_ ] "= a _% - d--'-_+ _duk

dU_ dU_

and m are functions of t, w, _ and u.; however, according to what we have

du k dw

just seen, we can assign t_e ui upper limits; we will therefore be able to assign

_u_ dui
them likewise to the _ and ____i. Let us assume, for example, that we have

du k dw

n'U_ ' PdU_I
euki<A' i_-7¥v:,<B for w<w),

A and B being two positive numbers.
du.

I

On the other hand, we know that we can assign a limit toT_-w for W=Wl_ if

w I is less than the quantity which we have called w 0 at the end of article 112.

Let us assume, for example, that we have

dw ]< u'o for w=w I,

' being a positive number. Then let u' be a function defined as followsu0 = =

du' du'
d---[+ otw _ = au'(4A + W)+ aB,

Ur _- tu0 for w : _.'t.

We will have manifestly

I
d_ _< u' •

NOW we see without difficulty that u' depends only on w and satisfies the equation

du'

a, _ = u'_(4A + W)+ B.

du.
3_

Therefore u' is finite; therefore _--w remains finite when _ tends toward 0.

Therefore we have asymptotically (extending this word to the same sense as above)

d--_ = _ +" d-_- +a' _-_ + ....
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We would demonstrate likewise that we have asymptotically

ao, ,/e_ aW dO,'
-R/=-dT +_-_-/- _"'--d? + ....

dlOi d*O_' d_O[ d20_
d.,t = _ +" _ +_' _ + ....

Here, therefore,

The series

is our final conclusion:

=_+ ¢_:t+ _ + ....,,,,+.,4+ _.rt+ _,.rl+...

defined in this paragraph are divergent, but they enjoy the same property as the

Stirling series, so that we have asymptotically

=,= _"+ v'_t + _:, +...,

.rt = nit + y_ + ¢t'_y_ + tty_ + ....

In addition, if D is a symbol of differentiation, that is to say if we set

d_-),,+...,-)._f

we will again have asymptotically

by,= DC_,t+ y_)+ _D_+ _Dy_+ ....

Concerning the study of the series analogous of those of Stirling, I will return Z582

to Section I of a memoir which I published in Acta mathematica (Vol. VIII, p. 295).

It is in addition clear that the same reasonings would subsist when we have

more than 2 degrees of freedom, and consequently n-i variables Wl, w2, ..., Wn_ I

instead of only one.

End of Volume One

Translated for the National Aeronautics and Space Administration
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